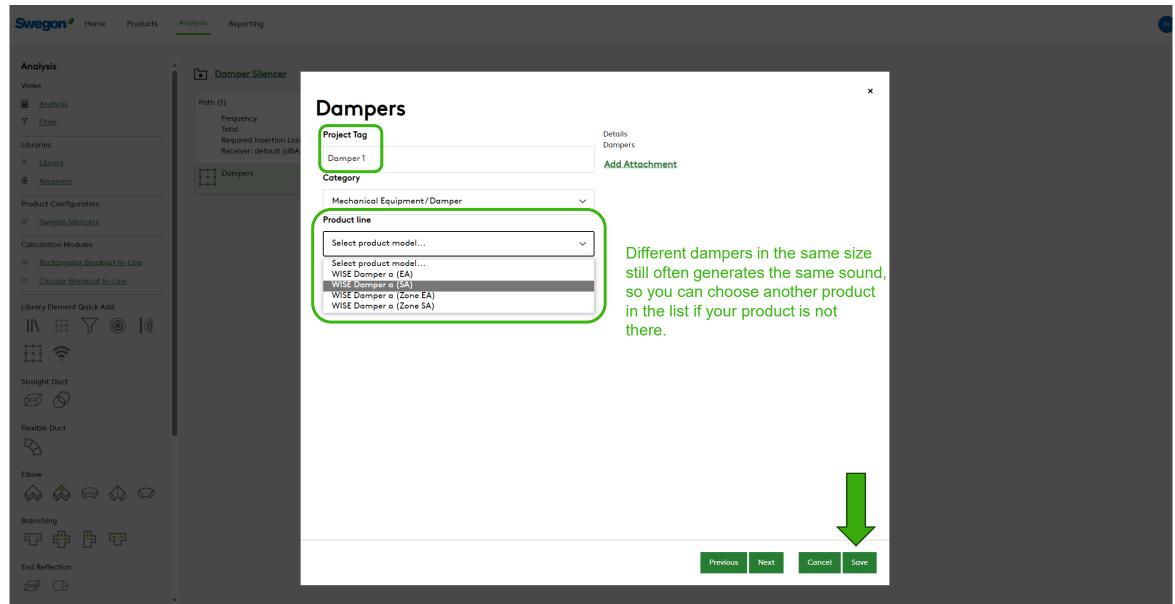
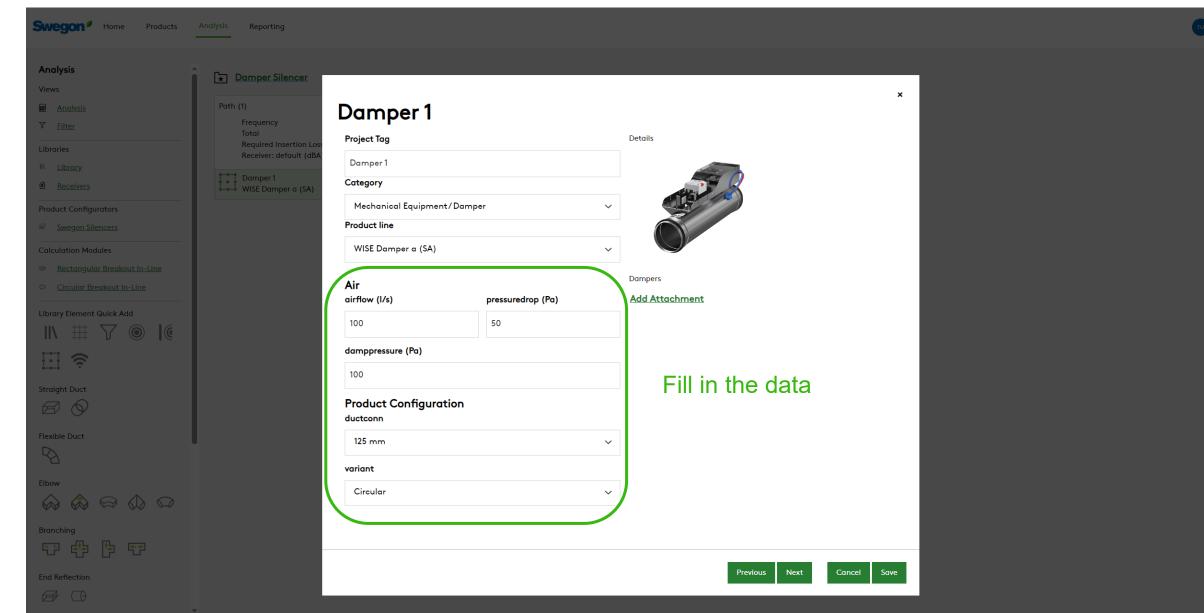

Making a Damper with Silencer calculation in Acoustic Design Analysis

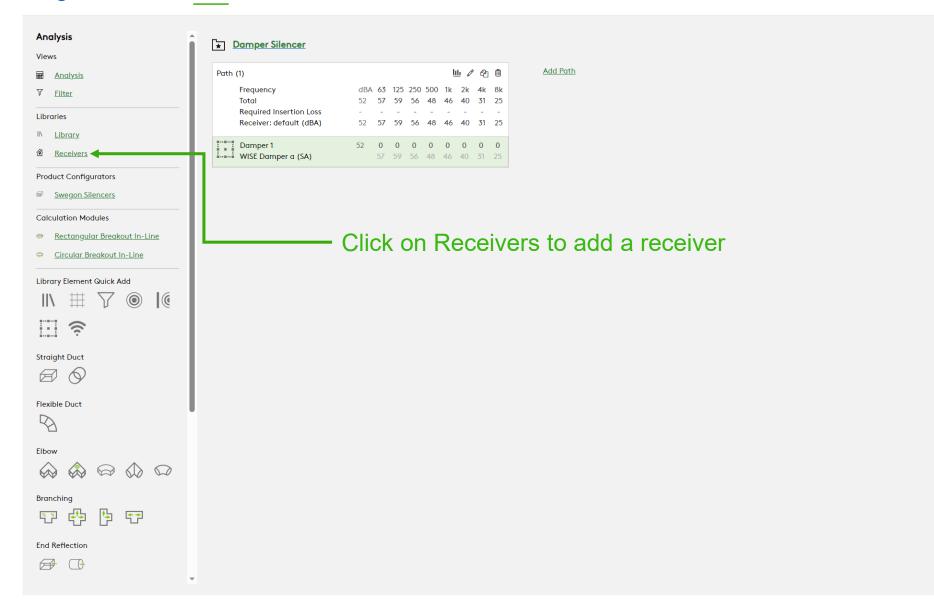
Swegon ⁹ Home Products Analysis					
Welcome Test user		C	lick Analysis t	o create a new p	roject
Products Select and configure noise control product without conducting a duct analysis.	t Analyze a duct system	Analysis	Create or open a project in y selection.	Projects	User settings
Recent Projects				Need help?	Like language
Project Name	Туре	Revision Created	Last Edited •	Contact your local Swegon representative thttps://www.swegon.com/contact/	for assistance.





Write a project Tag and Select Product, then click Save

Swegon



Swegon⁴

×

Fill in all required fields, but only Receiver Criteria is importand this time, and click Save Receivers **Receiver Properties** Name Name Receiver Receiver **Receiver Type** Indoor \sim Width (m) Length (m) Height (m) 3 3 3 Notes **Room Absorption** Absorption Coefficients Other \sim 125 63 250 500 1000 2000 4000 8000 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 **Receiver Criteria** Metric Value 35 dB(A) (35) Α \sim \sim

Swego

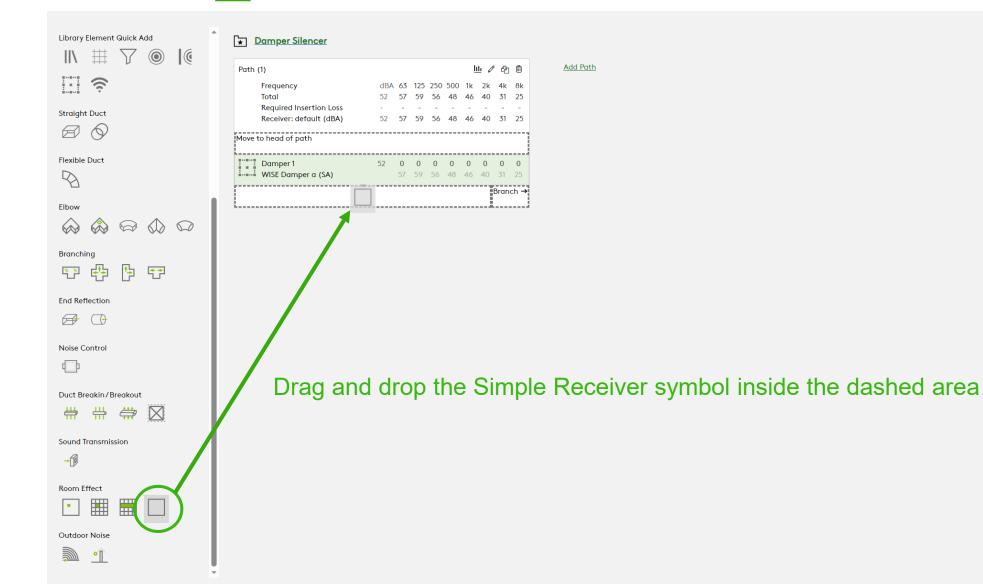
Analysis

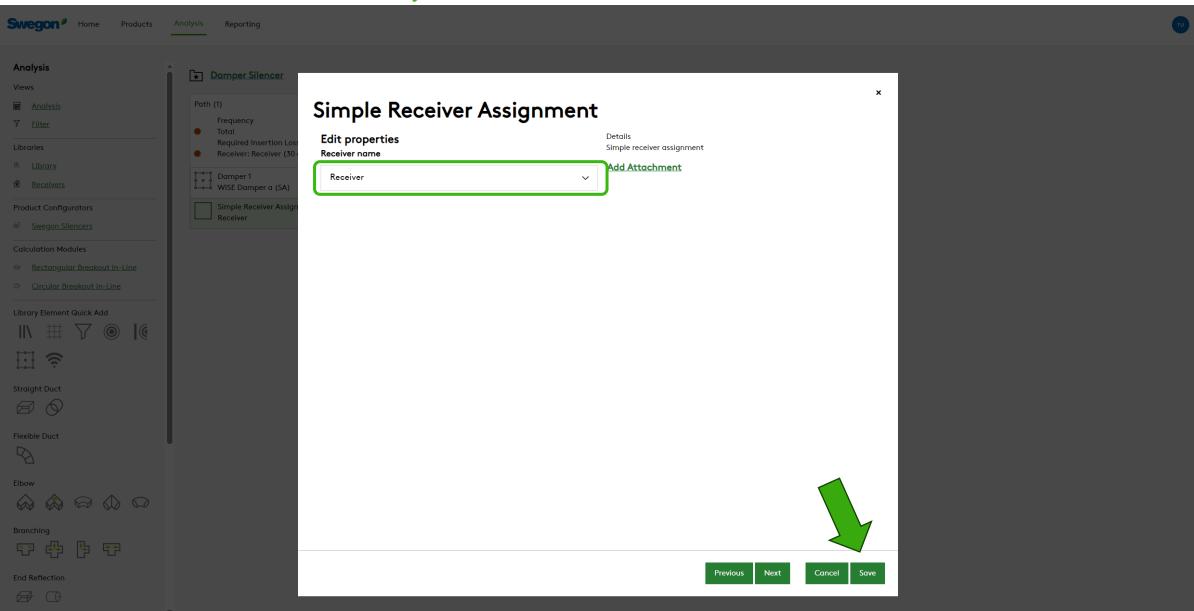
Views

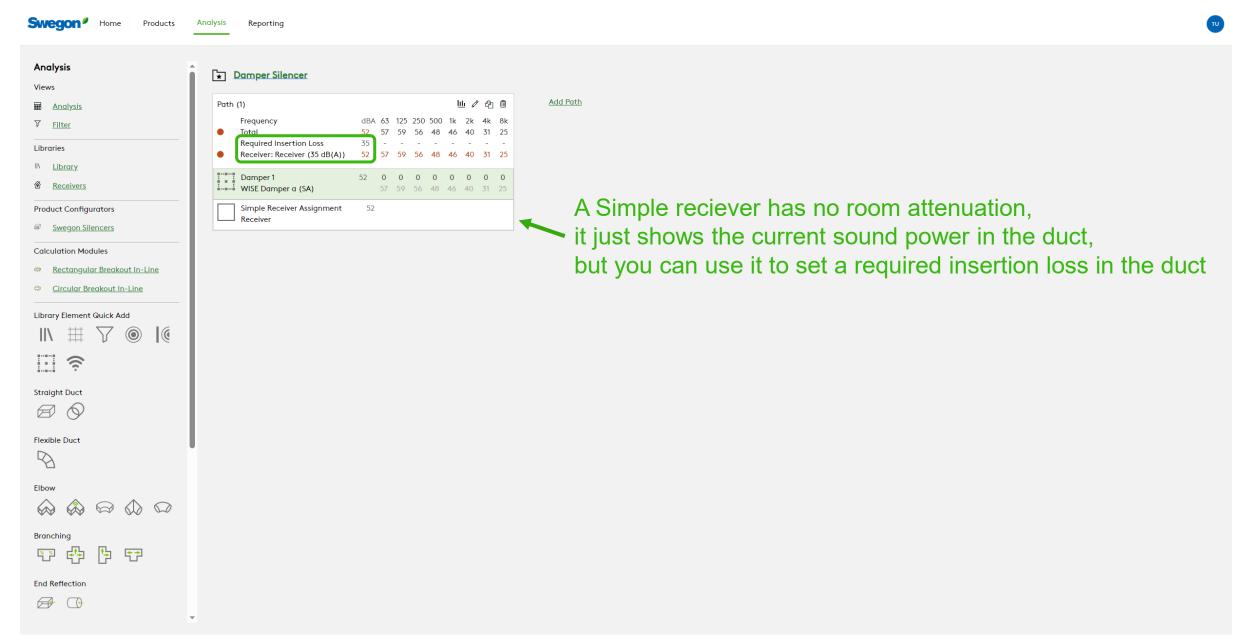
Ang

<u>ه Rece</u>

Elbow


Branching




TU

Select your receiver and click Save

Swegon

TU

	▲ Damper Silencer		
Analysis	Path (1)	山 / 2 前	Add Path
<u>ilter</u>	Frequency	dBA 63 125 250 500 1k 2k 4k 8k	
ies	 Total Required Insertion Loss 	52 57 59 56 48 46 40 31 25 35 - - - - - - -	
<u>.ibrary</u>	Receiver: Receiver (35 dB(A))	52 57 59 56 48 46 40 31 25	
Receivers	Damper 1 WISE Damper a (SA)	52 0 0 0 0 0 0 0 0 57 59 56 48 46 40 31 25	K
ct Configurators	Simple Receiver Assignment	52	Highlight the damper by clicking on it
wegon Silencers	Receiver		inginight the damper by cherning of it
lation Modules			
Rectangular Breakout In-Line			— Then click on Swegon Silencers
<u> Circular Breakout In-Line</u>			
y Element Quick Add			
₩ 7 🔘 🛛			
((i·			
ht Duct			
\diamond			
le Duct			
hing			
49 19 17			
eflection			
\bigcirc			

Write a Tag and fill in the dimensions

×

Silencer Selection

Fig Ountiny Sincer1 1	Identity					Override Required Inserti												Options
Impact of the state sta	Tag		Quar	ntity		Required Insertion Loss												Resources
Dimensions & Airflow Sound Merry Attenuator Sou	Silencer 1		1			Frequency			dBA	63	125	250	500	1k	2k	4	k	
Required function Loss 35 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sound Before Attenuator</td> <td></td> <td></td> <td>52</td> <td>57</td> <td>59</td> <td>56</td> <td>48</td> <td>46</td> <td>40</td> <td>31</td> <td>I</td> <td>25</td>						Sound Before Attenuator			52	57	59	56	48	46	40	31	I	25
Circular 0<	Dimensions & Airflow					Required Insertion Loss			35	-	-	-	-	-	-	-		
Circular 0<	Shape					Calculated Insertion Loss				-	-	-	-	-	-	-		
Connection Dim 125 Image: Connection Dim Mox length 1200 Image: Connection Dim 1200 Image: Connection Dim 1200 Image: Connection Dim Silncer Flow & Velocity Image: Connection Noise 100 Image: Connection Noise	Circular				~	Safety Factor				0	0	0	0	0	0	0		0
Makength 125 Image: Colored of Mile Makength Image: Colored of Mile Image: Colored of Mile <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
122 Image: mark mark mark mark mark mark mark mark	Connection Dim					Silencer Selection												<u> </u>
Max Length Model L PD w/SE A 63 125 250 500 1k 2k 4k 8k 200 v mrd Velocity 0 0 19 19 19 4 61 12 19 34 44 50 40 10 10 10 19 19 19 34 41 50 40 10 10 10 19 19 14 50 40 10 10 10 19 19 14 50 40 10 10 10 19 19 14 51 41 11 10 10 10 19 19 11 10 10 10 10 19 19 11 10 10 10 10 19 10	125			~	mm													Image
Model L PD w/sE A 63 125 250 500 1k 2k 4k 6k 1200					- 1				Octave N	lidband Fr	equency, H	lz						
1200 Image: Construct of Noise Sorbo-C-125-800 800 19 19 19 19 19 15 14 10 10 10 19 19 19 19 14 15 14 15 14 12 Sorbo-C-125-800 600 19 19 19 19 14 15 14 12 19 14 15 14 12 Sorbo-C-125-800 600 19 19 19 19 19 16 10 10 10 19 19 16 13 30 22 19 15 14 12 Maximum Pressure Drop 5000-C-125-1000 1000 19 19 19 5 5 12 13 50 40 30 10 10 19 19 10 10 19 19 10 10 19 19 10 10 19 19 10 10 10 10 10 19 10 10 10 10 10 10 10 10 10 <td>Max Length</td> <td></td> <td></td> <td></td> <td></td> <td>Model</td> <td>L</td> <td>PD</td> <td>w/SE</td> <td>Α</td> <td>63</td> <td>i 125</td> <td>250</td> <td>500</td> <td>1k</td> <td>2k</td> <td>4k</td> <td>8k</td>	Max Length					Model	L	PD	w/SE	Α	63	i 125	250	500	1k	2k	4k	8k
Override Airflow & Velocity Generated Noise 34 51 30 50 41 51 10 410 10	1200			~	mm													
Coverride Airflow & Velocity 34 51 47 57 18 11 9 8 13 Silencer Flow Rate Velocity 100 19 19 19 7 16 23 39 50 50 47 35 14 12 100 1/s 8.15 m/s 100 19 19 7 16 23 39 50 50 47 35 Maximum Pressure Drop 8.15 m/s 100 19 19 19 5 12 21 39 50 50 44 33 System Effects Sordo-A-125-1100 Generated Noise End Result 1100 19 19 19 7 15 24 43 50 50 44 33 Sordo-A-125-1100 Generated Noise End Result 1100 19 19 7 15 24 43 50 50 46 34 Sordo-A-125-100 Generated Noise End Result 1100 19 19 7 15 24 43 50 50 50 46 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>800</td><td>19</td><td>19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							800	19	19									
100 1/s 8.15 m/s m/s 100 19 19 7 16 23 33 50 47 35 Maximum Pressure Drop 31 50 43 33 22 19 15 14 13 87.18 SORDO-A-125-1100 1100 19 19 5 12 21 39 50 50 44 33 System Effects SorDo-A-125-1100 1100 19 19 5 12 21 39 50 50 44 33 SorDo-A-125-1100 1100 19 19 7 15 24 70 10 10 12 SorDo-A-125-1100 1100 19 19 7 15 24 40 10 10 12 10 10 10 12 11 9 8 13 14 13 15 14 13 15 14 13 14 15 14 15 14 15 14 15 14 15 14 15 14 </td <td>Override Airflow & Veloc</td> <td>ity</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>34</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Override Airflow & Veloc	ity								34								
100 1/s 8.15 m/s n/s 100 19 19 7 19 25 39 50 50 47 35 Maximum Pressure Drop 31 50 43 33 22 19 15 14 13 87.18 SORDO-A-125-1100 1100 19 19 5 12 21 39 60 43 33 22 15 10 410 12 Sorten Effects Sorto-125-1100 1100 19 19 7 15 24 43 50 44 33 Sorten Effects Sorto-125-1100 1100 19 19 7 15 24 43 50 46 34 Sorto-2-125-1100 1100 19 19 7 15 24 43 50 46 34 34 34 34 34 34 34 34 35 46 34 34 34 34 34 34 34 34 34 34 34 34 34 34	Silencer Flow Rate		Velo	ity							_							
100 1/s 8.15 m/s Maximum Pressure Drop 8.15 m/s 500 43 33 50 43 33 22 19 15 14 13 Maximum Pressure Drop 87.18 Pa 500125 - 1100 1100 19 19 5 12 21 39 50 44 33 System Effects SonDo2.125 - 1100 1100 19 19 7 15 10 40 12 SonDo2.125 - 1100 1100 19 19 7 15 10 40 12 SonDo125 - 1100 1100 19 19 7 15 10 31 50 44 32 15 10 31 30 22 15 10 12 24 13 30 22 15 10 12 24 13 30 22 15 10 31 30 22 15 10 30 12 23 24 13 30 22 15 10 <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>1000</td> <td>19</td> <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				,			1000	19	19									
87.18 Po Generated Noise 31 30 22 15 10 <10	100	l/s	8.15		m/s					31								
87.18 Pa Generated Noise 31 30 22 15 10 <10	Maximum Pressure Dror					SORDO-4-125-1100	1100	19	19		5	12	21	30	50	50	44	33
87.18 Pa End Result 33 52 47 35 16 11 9 8 13 System Effects SORDO-C-125-1100 1100 19 19 7 15 24 43 50 50 46 34 Solution Ideal Outlet Conditions - 3 to 4 diameters of straight duct v SORDO-A-125-800 800 19 19 4 9 16 30 40 50 38 25 Sordo-A-125-800 800 19 19 4 9 16 30 40 50 38 25 Generated Noise 31 30 22 15 10 <10	Muximum Fressure Drop	,					1100											
System Effects 31 30 22 15 10 <10	87.18				Pa					33								
System Effects 31 30 22 15 10 <10						SORDO-C-125-1100	1100	19	19		7	15	24	43	50	50	46	34
Silencer Inlet Condition SORDO-A-125-800 800 19 19 4 9 16 30 40 50 38 25 Generated Noise 31 30 22 15 10 <10	System Effects											30	22	15	10	<10		12
Ideal Outlet Conditions - 3 to 4 diameters of straight duct v SORDO-A-125-800 800 19 19 4 9 16 30 40 50 38 25 Generated Noise 31 30 22 15 10 <10	Silencer Inlet Condition					End Result				31	50) 44	32	16	11	9	8	13
End Result 36 53 50 40 20 12 9 8 13		7. 4	4 .P.	the state of the s			800	19	19		4	9						
	iaeal Outlet Condition	ns - 3 to 4	+ diam	eters of straight duct	~					7 /								
Diameter non-sincher Indisidur Lengur	Diameter from Silencer		Tran	ition length		Ena Kesult				36	53	50	40	20	12	9	8	15
CLA-A-125-500 500 19 19 5 9 13 21 29 35 31 20	Diameter from Silencer		Irans	Sition Length		CL A-A-125-500	500	19	19		5	9	13	21	29	35	31	20

×

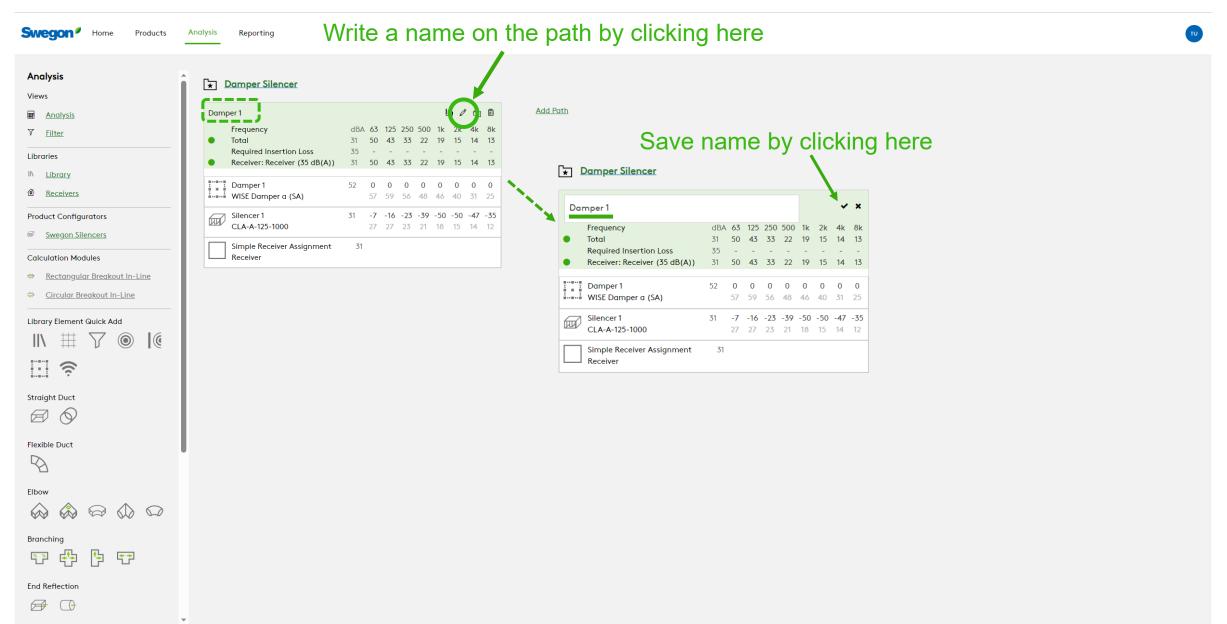
Silencer Selection

Identity				Override Required Inserti												Options
Гад		Quantity		Required Insertion Loss												Resources
Silencer 1		1		Frequency			dBA	63	125	250	500	1k	2k	4k	8k	Product Sheet
Dimensions & Airflow				Sound Before Attenuator		_	52 35	57	59	56	48	46	40	31	25	Sound attenuator for circular ducts Brochure
hape				Calculated Insertion Loss			22	-	-	-	-	-	-	-	-	Acoustics Overview Instruction
Circular			~	Safety Factor				0	- 0	-	-	-	-	-	- 0	Installation – Maintenance
			-													Quality <u>Building.product declaration</u>
onnection Dim				Silencer Selection												Image
125		~	mm				Octave M	Midband Fr	equency, H	z						
lax Length				Model	L	PD	w/SE	A	63	125	250	500	1k	2k	4k 8k	
1200		~	mm													
verride Airflow & Velocity				SORDO-C-125-800 Generated Noise End Result	800	19	19	34	6 31 51	12 30 47	19 22 37	34 15 18	44 10 11	<10	40 26 <10 12 3 13	
lencer Flow Rate	,	Velocity		CLA-A-125-1000	1000	19	19		7	16	23	39	50	50	47 35	
100	l/s	8.15	m/s	Generated Noise End Result				31	27 50		23 33	21 22	18 19		4 12 4 13	
aximum Pressure Drop				SORDO-A-125-1100	1100	19	19		5	12	21	39	50		14 33	
87.18			Pa	Generated Noise End Result				33	31 52		22 35	15 16	10 11		<10 12 3 13	
ystem Effects				SORDO-C-125-1100 Generated Noise	1100	19	19		7 31	15 30	24 22	43 15	50 10		46 34 <10 12	
ilencer Inlet Condition				End Result		\sim		31	50			16	11		3 13	
Ideal Outlet Conditions -	3 to 4 d	liameters of straight duct	~	SORDO-A-125-800 Generated Noise	800	19	19		4 31	9 30	16 22	30 15	40 10		58 25 <10 12	
liameter from Silencer		Transition Length		End Result	1			36	53		40	20	12		3 13	
nameter from silencer		Tanation Length		CLA-A-125-500	500	19	19		5	9	13	21	29	35	51 20	

Pressure drop

Sound power after Silencer

Choose a silencer in the list (highlight it) and click Create



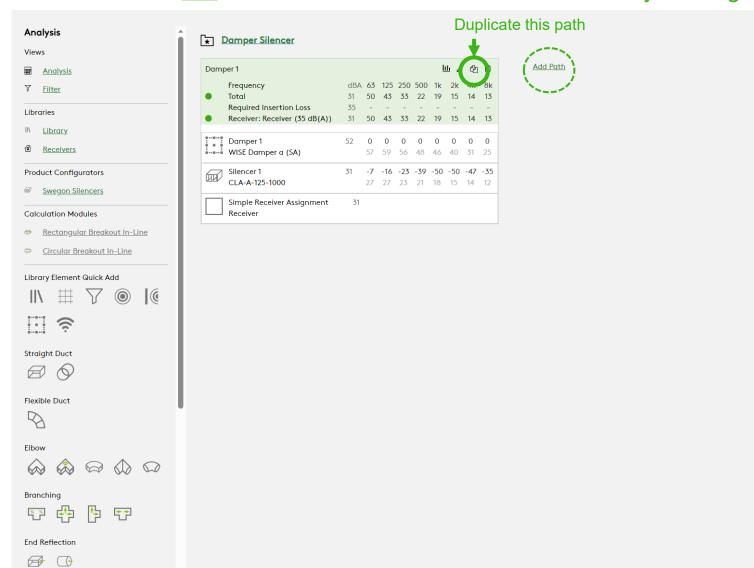
Identity		Overric	de Required Inserti											(Options
Tag	Quantity	Requir	red Insertion Loss												Resources
Silencer 1	1	Frequ	ency			dBA	63	125	250	500	1k	2k	4k	8	8k Product Sheet
Dimensions & Airflow			d Before Attenuator			52 35	57	59	56	48	46	40	31		25 Brochure
Shape		- · ·	Ilated Insertion Loss			35	-	-	-	-	-	-	-	-	- Acoustics Overview - Instruction
Circular	~	Safet	y Factor				0	0	0	0	0	0	0	0	0 Installation – Maintenance
															Quality <u>Approval 2706/92, Duct insulation</u>
Connection Dim			er Selection												Building product declaration
125	∽ mr	n				Octave M	idband Fre	equency, H	z						Image
Max Length		Mode	1	L	PD	w/SE	Α	63	125	250	500	1k	2k	4k	8k
1200	∽ mr		DO-C-125-800	800	19	19		6	12	19	34	44	50	40	26
Override Airflow & Velocity	•		rated Noise	000	17	17	34	31 51	30	22 37	15 18	10 11	<10	<10	12 13
Silencer Flow Rate	Velocity	CLA-	A -125-1000	1000	19	19		7	16	23	39	50	50	47	35
100 I/s	; 8.15 m/		rated Noise Result				31	20 50		23 33	21 22	18 19			12 13
Maximum Pressure Drop			00-A-125-1100 rated Noise	1100	19	19		5 31	12 30	21 22	39 15	50 10			33 12
87.18	P						33	52		35	15 16	11			13
System Effects			00-C-125-1100 rated Noise	1100	19	19		7 31	15 30	24 22	43 15	50 10			34 12
Silencer Inlet Condition		End R	Result				31	50) 44	32	16	11	9	8	13
Ideal Outlet Conditions - 3 to	4 diameters of straight duct 🗸 🗸	Gene	00-A-125-800 rated Noise	800	19	19		4 31		16 22	30 15	40 10	<10	<10	25
Diameter from Silencer	Transition Length	End R					36	53		40	20	12			13
		CLA-	A -125-500	500	19	19		5	9	13	21	29	35	31	20

Swegon^ø

×

Swegon^ø

Swegon⁴


Swegon⁴ Home

Products

-

Analysis Reporting YOU CA

You can add more calculations by clicking on "Add path" or Duplicate the first path 💿

If you duplicate the path you get a copy

Analysis

Views

- Analysis
- 了 <u>Filter</u>

Libraries

- II\ <u>Library</u>
- Receivers
- Product Configurators
- Swegon Silencers

Calculation Modules

Rectangular Breakout In-Line

Swegon⁹ Home Products Analysis Reporting

★ Damper Silencer

Frequency

Damper 1 (Copy) WISE Damper a (SA)

CLA-A-125-1000

Required Insertion Loss

Simple Receiver Assignment

Receiver: Receiver (35 dB(A)) 34 53 46 36

Total

Silencer 1

☐ Receiver

dBA 63 125 250

31 50 43 33

35 - - -

52 0 0 0

31 -7 -16 -23

31

57 59 56

27 27 23

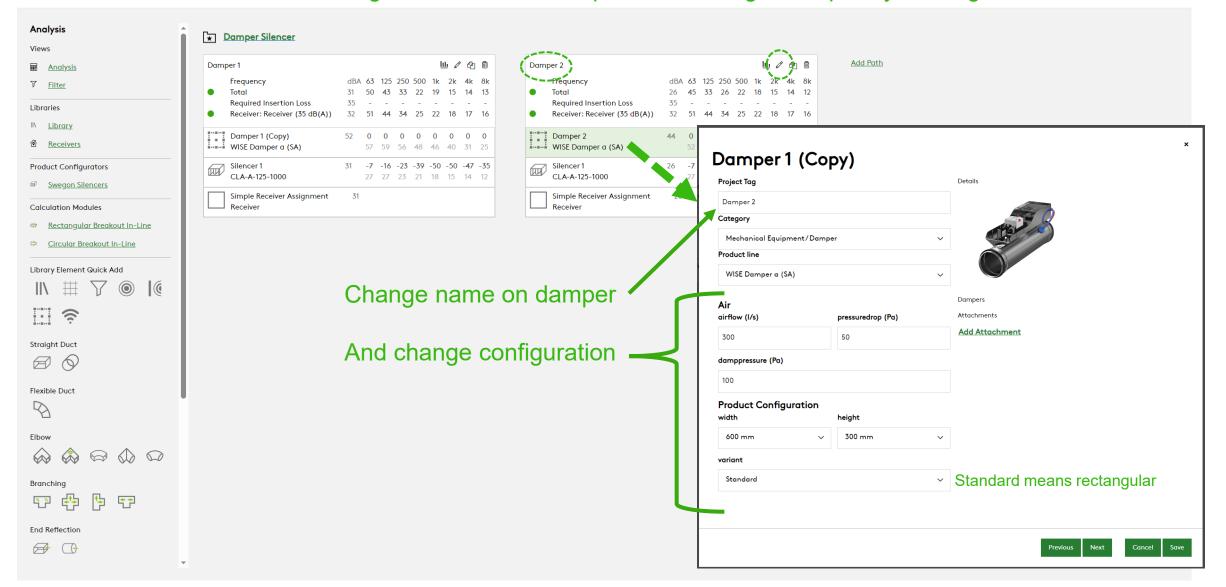
Damper 1

-

🐡 Circular Breakout In-Line

	Į	<u>llı</u> Ø	° 6	Ô	Damp	er 1 (Copy)						Ŀ	<u>llı</u> Ø	° 42	Ŵ
500	1k	2k	4k	8k		Frequency	dBA	63	125	250	500	1k	2k	4k	8k
22	19	15	14	13	•	Total	31	50	43	33	22	19	15	14	13
-	-	-	-	-		Required Insertion Loss	35	-	-	-	-	-	-	-	-
25	22	19	17	16	•	Receiver: Receiver (35 dB(A))	34	53	46	36	25	22	19	17	16
0	0	0	0	0	1.1.1	Damper 1 (Copy)	52	0	0	0	0	0	0	0	0
48	46	40	31	25	1	WISE Damper a (SA)		57	59	56	4 8	46	40	31	25
-39	-50	-50	-47	-35		Silencer 1	31	-7	-16	-23	-39	-50	-50	-47	-35
21	18	15	14	12		CLA-A-125-1000		27	27	23	21	18	15	14	12
						Simple Receiver Assignment Receiver	31								

Swegon

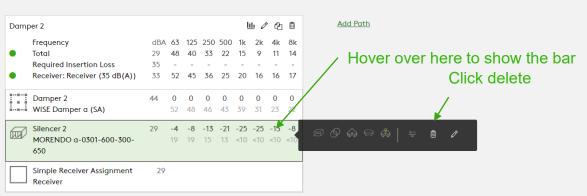

Add Path

Swegon⁹ Home Products Analysis

Reporting

Products Analysis Reporting

Analysis ★ Damper Silencer Views Analysis 7 Filter Libraries II\ <u>Library</u> Receivers Product Configurators Swegon Silencers Receiver Calculation Modules # Rectangular Breakout In-Line 🐡 Circular Breakout In-Line Library Element Quick Add $\blacksquare abla$ ··· ? Straight Duct Flexible Duct \square Elbow


 \mathbf{w}

Branching

End Reflection

— Delete the old silencer, and Select a new with Swegon Silencers

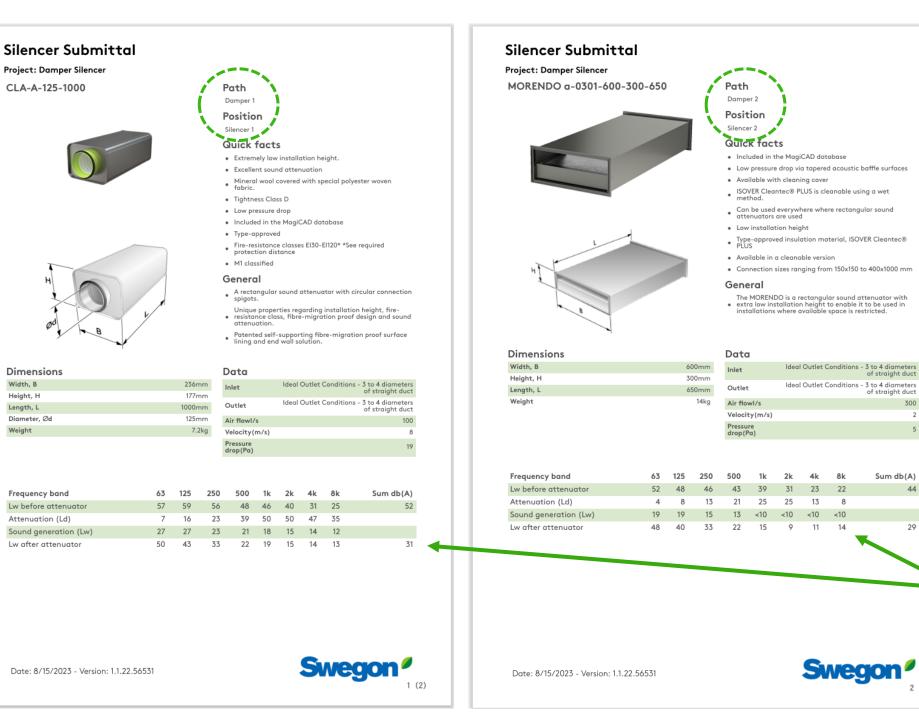
Damp	per 1						Ŀ	<u>llı</u> Ø	ළු	Ŵ
	Frequency	dBA	63	125	250	500	1k	2k	4k	8k
•	Total	31	50	43	33	22	19	15	14	13
	Required Insertion Loss	35	-	-	-	-	-	-	-	-
•	Receiver: Receiver (35 dB(A))	33	52	45	36	25	20	16	16	17
	Damper 1 (Copy)	52	0	0	0	0	0	0	0	0
I	WISE Damper a (SA)		57	5 9	56	48	46	40	31	25
	Silencer 1	31	-7	-16	-23	-39	-50	-50	-47	-35
<u>1111</u> /	CLA-A-125-1000		27	27	23	21	18	15	14	12

Swegon[•]

Analysis	Silencer Schedule Silencer Submittal					
Views						
Analysis	Damper 1	山 🖉 🔁 🛍	Damper 2	山 🖉 🔁 🛍	Add Path	
▼ <u>Filter</u>	Frequency	dBA 63 125 250 500 1k 2k 4k 8k	Frequency	dBA 63 125 250 500 1k 2k 4k 8k		
	 Total 	31 50 43 33 22 19 15 14 13	Total	29 48 40 33 22 15 9 11 14		
Libraries	Required Insertion Loss Receiver: Receiver (35 dB(A))	35	Required Insertion Loss Receiver: Receiver (35 dB(A))	35		
IN Library	 Receiver: Receiver (55 dB(A)) 	55 52 45 56 25 20 16 16 17	 Receiver: Receiver (35 db(A)) 	55 52 45 56 25 20 16 16 17		
	Damper 1 (Copy)	52 0 0 0 0 0 0 0 0	Damper 2	44 0 0 0 0 0 0 0 0		
Receivers	WISE Damper a (SA)	57 59 56 48 46 40 31 25	WISE Damper a (SA)	52 48 46 43 39 31 23 22		
Product Configurators	Silencer 1	31 -7 -16 -23 -39 -50 -50 -47 -35	Silencer 2	29 -4 -8 -13 -21 -25 -25 -13 -8		
Froduct Configurators	Silencer 1 CLA-A-125-1000	27 27 23 21 18 15 14 12	Silencer 2 MORENDO a-0301-600-300-	19 19 15 13 <10 <10 <10		
Swegon Silencers			650			
	Simple Receiver Assignment	31		20		
Calculation Modules	Receiver		Simple Receiver Assignment Receiver	29		
Rectangular Breakout In-Line						
Circular Breakout In-Line						
Library Element Quick Add						
· ·						
$\parallel \parallel \equiv \bigtriangledown \odot \mid \bigcirc \mid \bigcirc \mid$						
\sim						

Elbow

-


Branching

Straight Duct

Flexible Duct

5666

End Reflection

Width, B

Weight

Swegor

Sound calculations

300

2

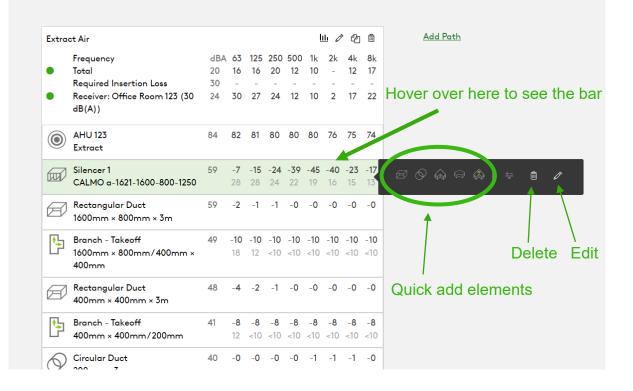
44

29

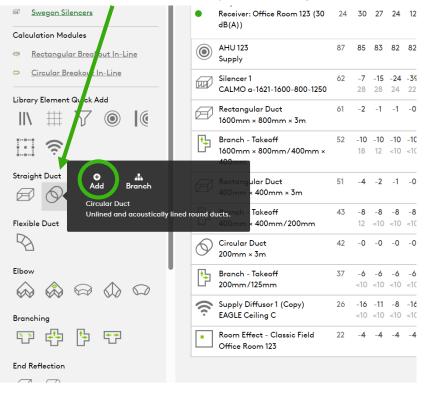
2 (2)

Tips and Tricks

You can mute objects, by clicking the mute symbol Then the object turns grey and is not longer included in the sound calculation. You can unmute them the same way.


Extra	ct Air						l	<u>III</u> Ø	<u>ት</u>	Ē	<u>Add Path</u>
	Frequency	dBA	63	125	250	500	1k	2k	4k	8k	
	Total	20	16	16	20	12	10	-	12	17	
	Required Insertion Loss	30	-	-	-	-	-	-	-	-	
•	Receiver: Office Room 123 (30 dB(A))	24	30	27	24	12	10	2	17	22	Hover over this area to show the bar
٢	AHU 123 Extract	84	82	81	80	80	80	76	75	74	
	Silencer 1	59	-7	-15	-24	-39	-45	-40	-23	-17	
	CALMO a-1621-1600-800-1250		28	28	24	22	19	16		13	
Ø	Rectangular Duct 1600mm × 800mm × 3m	59	-2	-1	-1	-0	-0	-0	-0	-0	1
₽ 5	Branch - Takeoff	49	-10	-10	-10	-10	-10	-10	-10	-10	
L l	1600mm × 800mm/400mm ×		18	12	<10	<10	<10	<10	<10	<10	
	400mm										Mute button
Ø	Rectangular Duct 400mm × 400mm × 3m	48	-4	-2	-1	-0	-0	-0	-0	-0	
₽	Branch - Takeoff	41	-8	-8	-8	-8	-8	-8	-8	-8	
Ľ	400mm × 400mm/200mm		12	<10	<10	<10	<10	<10	<10	<10	
6	Circular Duct	40	-0	-0	-0	-0	-1	-1	-1	-0	

The benefit is to be able to see what the result is without a silencer for example, without deleting any object.


-/ 1 4	et Air						-	<u>11</u> Ø	-	Ō
	Frequency	dBA			250			2k	4k	8k
•	Total Required lacentical and	48	22	30	41	41	47	35	35	34
	Required Insertion Loss Receiver: Office Room 123 (30	30 48	- 30	32	- 41	41	- 47	- 35	35	- 34
•	dB(A))	40	50	52	41	41	4/	33	55	54
٢	AHU 123 Extract	84	82	81	80	80	80	76	75	74
	Silencer 1	-	-7	-15	-24	-39	-45	-40	-23	-17
	CALMO a-1621-1600-800-1250		28	28	24	22	19	16	15	13
Ø	Rectangular Duct 1600mm × 800mm × 3m	84	-2	-1	-1	-0	-0	-0	-0	-0
₽	Branch - Takeoff	75	-10	-10	-10	-10	-10	-10	-10	-10
G	1600mm × 800mm/400mm × 400mm		18	12	<10	<10	<10	<10	<10	<10
Ø	Rectangular Duct 400mm × 400mm × 3m	74	-4	-2	-1	-0	-0	-0	-0	-0
₽ 5	Branch - Takeoff	66	-8	-8	-8	-8	-8	-8	-8	-8
G	400mm × 400mm/200mm		12	<10	<10	<10	<10	<10	<10	<10
\Diamond	Circular Duct 200mm × 3m	66	-0	-0	-0	-0	-1	-1	-1	-0
₽	Branch - Takeoff	60	-6	-6	-6	-6	-6	-6	-6	-6
G	200mm/125mm		<10	<10	<10	<10	<10	<10	<10	<10
$\widehat{}$	Extract Diffusor 1	52	-28	-21	-10	-11	-5	-13	-12	-12
•	ALG		15	15	21	15	13	<10	<10	<10
•	Room Effect - Classic Field Office Room 123	48	-4	-4	-4	-4	-4	-4	-4	-4

Quick add Library Elements without drag and drop

Hover over element icon Quick add by clicking "Add"

Get the correct pressure drop for the silencer by using system effects

Silencer Selection

Identity			Override Required Inserti													Options	
Tag	Quantity		Required Insertion Loss													Unisunlated Cleaning Cover	
Silencer 1	1		Frequency			dBA	63	125	250	500	1k	2k		4k	8k	None	~
Dimensions & Airflow			Sound Before Attenuator			87	85	83	82	82	82	78		78	76	Fire-Resistant Insulated Cleaning Cover	
			Required Insertion Loss			30	-	-	-	-	-	-		-	-	None	~
Shape			Calculated Insertion Loss				-	-	-	-	-	-		-	-		·
Rectangular/CALMO		\sim	Safety Factor				0	0	0	0	0	0	(0	0	Insulated 50mm Stone Wool	
Duct Width	Duct Height															Perforated Sheet Metal Lining	
	-		Silencer Selection													Flange Connection	
1600 ~ mn	n 800 ~	mm				Octave M	idband Freq	uency, H	z							Resources	
Max Length			Model	L	PD	w/SE	۵		63 12	5 250	500	1k	2k	4k	8k	Product Sheet	
1250	~	mm		-			~									Attenuator with recessed connection for rectangular ducts	
Quarrida Airflau & Malasita			CALMO a-1611-1600-800-650 Generated Noise	650	6	12 +9			5 10 28 28	3 24	23 22	27 19	27 16	15 15	10 13	Brochure Acoustics Overview	
Override Airflow & Velocity	(End Result			\frown	30		32 32	30	15	9	11	24	27	Instruction	
Silencer Flow Rate	Velocity		CALMO a-1621-1600-800-1250	1250	7	14			7 15		39	45	40	23	17	Installation, commissioning, maintenance	
3000	s 2.34	m/s	Generated Noise End Result		1	X	22		28 28 30 27		22 1	19 0	16 0	15 16	13 20	Quality Approval 2706/92, Duct insulation	
Maximum Pressure Drop			CALMO a-1622-1600-800-1250	1250	3	7			4 9	16	21	25	18	11	11	Building.product declaration	
· · ·		-	Generated Noise End Result			+9	32		11 11 33 33	<10	<10 17	<10 11	<10 20	<10 28	<10 26	Image	
50		Pa					52			, 2,			20	20	20		
System Effects																	
Silencer Inlet Condition																	
Axial Fan		\sim				- \ F	Pressi	ure d	lrop v	vith s	yster	n eff	ects	S			
Axiorrun		•															
Diameter from Silencer	Transition Length																
0 ~		\sim					ressu						ons				
Silencer Outlet Condition	1					(;	3-4 dia	ame	ters s	traigt	n au	ct)					
Radius Elbow with no turning van	es	~															
V	_/																

×

Silencer Selection

Identity			Override Required Inserti										
Тад	Quantity		Required Insertion Loss										
Silencer 1	1		Frequency		dBA	63	125	250	500	1k	2k	4k	8k
Dimensions & Airflow			Sound Before Attenuator		87	85	83	82	82	82	78	78	76
			Required Insertion Loss		30	-	-	-	-	-	-	-	-
Shape			Calculated Insertion Loss Safety Factor			-	-	-	-	-	-	-	-
Rectangular/CALMO		~	,				0	0	0		0	0	0
Duct Width	Duct Height		Silencer Selection										
1600 v mm	800	v mm			Octave Mic	Iband Free	uency, Hz						
Max Length			Model	L PD	w/SE	A	6	3 125	250	500	1k :	2k 4l	k 8k
1250		∽ mm		· · · ·	encers found n	atching v							
Override Airflow & Velocity						, a coning y							
Silencer Flow Rate	Velocity												
3000	\$ 2.34	m/s											
Maximum Pressure Drop													
3		Pa	- If			•			. п.				
		'	If you dor	nt see a	any s	sile	nce	rs ir	n th		St,		
System Effects			its probat	olv bec	ause	th	e m	axir	ทบเ	m n	res	sur	e dr
Silencer Inlet Condition			_	-						-		our	
Axial Fan		~	Increase	the val	ue to	5 50) Pa	a or	hig	ghei	.		
Diameter from Silencer	Transition Length												
0 ~		~											
Silencer Outlet Condition													
Radius Elbow with no turning vane	es	~											

