SOTTO

Schalldämpfender Transferluftauslass

KURZINFORMATIONEN

- O Für Transferluft durch die Wand
- O Herstellung einer runden Öffnung
- Einfache Montage
- O Zubehör:
 - Tellerventil TRAC
 - Teleskopische Wanddurchführung VGC
- O Standardfarbe Weiß RAL 9003
 - 5 alternative Standardfarben
 - Andere Farben sind auf Anfrage erhältlich

L	LUFTVOLUMENSTROM - DRUCKABFALL - R _w -WERT										
SOTTO	Öffnung	10	Pa	15	Pa	20 Pa		R _w =D _{n,ew}			
Größe	(mm)	l/s	m³/h	l/s	m³/h	l/s	m³/h	(dB)			
80-100	80	14	50	17	61	19	68	55			
80-100	100	16	58	19	68	23	83	55			
125-160	125	21	76	25	90	29	104	51			
125-160	160	23	83	27	97	31	112	51			

Die Daten gelten bei Montage in 100 mm dicker Trockenbauwand mit 10 m² Transmissionsfläche. Ein Auslass auf jeder Seite der Wand.

Technische Beschreibung

Ausführung

Schalldämpfender Transferluftauslass angepasst für die Montage in Trockenbauwänden und ausgeführt als rechteckige Balken, die isolierende Schalldämpfer mit verstärkter Oberflächenbeschichtung der Brandschutzklasse B-s1, d0 gemäß EN ISO 11925-2, enthalten. Offener Spalt an den kurzen Seiten. Die Balken werden an den mitgelieferten Befestigungsrahmen aufgehängt.

Material und Oberflächenbehandlung

Der Schallbalken und der Befestigungsrahmen werden aus verzinkten Stahlblech hergestellt. Der Schallbalken ist in unserer weißen Standardfarbe.

- Standardfarbe:
 - Weiß halbblank, Glanz 40, RAL 9003/NCS S 0500-N
- Alternative Standardfarben:
 - Silber blank, Glanz 80, RAL 9006
 - Graualuminium blank, Glanz 80, RAL 9007
 - Weiß halbblank, Glanz 40, RAL 9010
 - Schwarz halbblank, Glanz 35, RAL 9005
 - Grau halbmatt, Glanz 30, RAL 7037
- Unlackiert und andere Farbtöne sind auf Anfrage erhältlich.

Anpassung

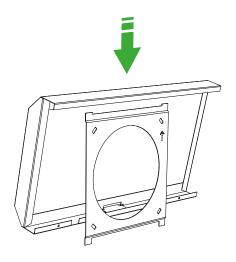
Andere Farbtöne sind auf Anfrage erhältlich. Das Frontteil des Auslasses kann mit Schrift versehen werden, z. B. dem Namen des Unternehmens. Für weitere Informationen setzen Sie sich bitte mit Ihrem Swegon-Büro in Verbindung.

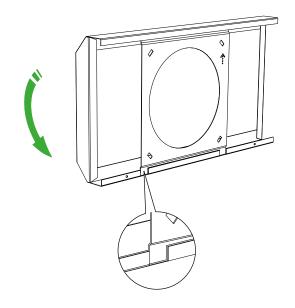
Zubehör

Tellerventil:

TRAC. Das Tellerventil besteht aus Stahlblech und ist in unserer weißen Standardfarbe RAL 9003/NCS S 0500-N lackiert. Das Tellerventil ist außerdem in folgenden alternativen Standardfarben lieferbar: Staubgrau RAL 7037, Weißaluminium RAL 9006, Tiefschwarz RAL 9005, Graualuminium RAL 9007 sowie Weiß RAL 9010.

Wird auf der einen Seite verwendet, wenn nur ein Schallbalken benötigt wird.


Wanddurchführung:


VGC. Runde teleskopische Wanddurchführung aus verzinktem Stahlblech.

Montage

Herstellung der Öffnung gemäß Tabelle 1. Der Befestigungsrahmen wird an der Wand festgeschraubt, wobei der Pfeil am Befestigungsrahmen nach oben zeigen muss. Der Schallbalken wird über dem Federbein des Befestigungsrahmens festgedrückt, siehe Abb. 1.

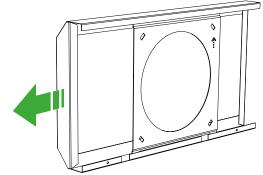
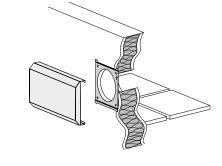


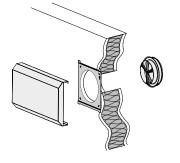
Abb. 1. Montage

Projektierung

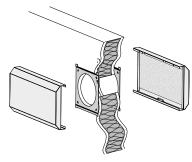
- Die Auslässe sind für die Montage in Trockenbauwänden vorgesehen.
- Betonwand, oder Wanddurchführung verringert das Schalldämmmaß, siehe Tabelle 1.
- Faustregel: R_w für Transferluftauslässe = Schalldämmklasse Tür + 5 dB (Hinweis: Für Türen wird meist eine Transmissionsfläche von 2 m² angegeben.)
- Die Berechnung der resultierenden R_w-Zahl der Wandkonstruktion geht aus dem Beispiel auf der nächsten Seite hervor.
- Tabelle 1 zeigt das Schalldämmmaß D_{n,ew} für einen Transferluftauslass, der auf 10 m² Transmissionsfläche bezogen ist.
- Die Messungen wurden gemäß ISO 9614-2 Technisch – ausgeführt.
- Der Wert R_w = D_{n,ew} wurde gegen die Referenzkurve in ISO 717-1 ausgewertet. Ein Test wurde an einer 100 mm dicken gegipsten Trockenbauwand mit Dämmung vorgenommen.


Der Balken und der Schallabsorber werden bei Bedarf mit einem Staubsauger mit Bürstenaufsatz oder alternativ mit lauwarmem Wasser mit Spülmittel gereinigt.

Bei Bedarf kann der gesamte Schallabsorber ausgetauscht werden.


Umwelt

Baustoffdeklarationen sind auf unserer Homepage im Internet unter www.swegon.com zu finden.


1.

2a.

2b.

3.

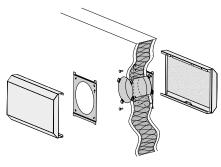


Abb. 2. Verwendungsalternativen.

- 1. Verdeckte Montage zum Korridor.
- Sichtbare Montage zum Korridor, SOTTO wird durch Tellerventil TRAC (2a) oder doppelte SOTTO (2b) ergänzt.
- 3. Wie 2b, aber mit Wanddurchführung VGC.

Tabelle 1

	$R_{w} = D_{n,ew} [dB]$, 10 m ²					
Größe SOTTO	Herstellung der Öffnung in der Wand (mm)	Ein Auslass	Ein Auslass + Tellerventil, s = 15 mm	Doppelte Auslässe	VGC in Öffnung	Betonwand
80-100	80	54	55	55	Reduziert um -3 dB	Reduziert um -10 dB
80-100	100	53	54	55	Reduziert um -3 dB	Reduziert um -10 dB
125-160	125	49	47	51	Reduziert um -3 dB	Reduziert um -10 dB
125-160	160	48	48	51	Reduziert um -3 dB	Reduziert um -10 dB

Doppelte Auslässe = ein Auslass auf jeder Seite der Wand.

Standardlieferung eines Auslasses.

s = 15 mm Spalt am Tellerventil.

Dimensionierung

Berechnung des Schalldämmmaßes für eine Wand

Berechnung des gesamten Schalldämmmaßes einer Wand inklusive Tür und Transferluftauslass.

 $D_{n,ew} = R_w$ -Wert des Transferluftauslass bezogen auf eine Transmissionsfläche von 10 m².

 $R_{wand} = R_{w}$ -Wert der Wand ohne Tür und Transferluftauslass, wird meistens für 10 m² angegeben.

Berchnung des Unterschieds zwischen Wand und Tür sowie Transferluftauslass (Tranmissionsfläche10 m²).

Unterschied: R_{Wand} - $D_{n,ew}$ erhalten Sie aus Tabelle 3. HINWEIS! Rechnen Sie die Tür zunächst auf 10 m² um.

Beispiel: Tür + Transferluftauslass

- Wand, R_w = 40 dB, ohne Tür und Transferluftauslass.
- Transferluftauslass, $R_w = D_{n,ew} = 40 \text{ dB}.$
- Tür, R_w= 35 dB bei 2 m² ergibt aus Tabelle 2.

 $R_w = D_{n,ew} = 35 + 7 = 42 \text{ dB für die Tür bei 10 m}^2$.

Einberechnung der Tür:

$$R_{wand} - D_{n.ew} = 40 - 42 = -2$$

Tabellenunterschied = -2 dB ergibt eine Verringerung des Gesamtwertes der Wand um 2.

 $R_{Wand} = 38 \text{ dB mit Tür.}$

Einberechnung des Transferluftauslass:

 $R_{wand} = 38 \text{ dB}$

$$R_{Wand} - D_{n.ew} = 38-40 = -2$$

Tabellenunterschied = -2 dB ergibt eine Verringerung des neuen Gesamtwertes der Wand um weitere 2.

Wand, Gesamtwert= 36 dB mit Tür + Transferluftauslass.

Auf andere Transmissionsfläche umrechnen

Der angegebene Wert $D_{n,ew}$ des Transferluftauslasses gibt R_w bei normalisierter Transmissionsfläche von 10 m² an.

Umrechnung auf andere Transmissionsflächen:

Tabelle 2

Fläche(m²)	10	2	1
Korrektur (dB)	0	-7	-10

Beispiel mit anderer Transmissionsfläche

Vergeleichen Sie Swegons Transferluftauslass mit einer Tür, meistens 2 m² Transmissionsfläche hat.

Tür R. = 35 dB bei 2 m²

Transferluftauslass $D_{n,ew}$ bei 10 $m^2 = 50$ dB Umrechnung auf 2 m^2 Transmissionsfläche.

Die Tabelle ergibt: Transferluftauslass $R_w = D_{n,ew}$ bei 2 $m^2 = 50-7 = 43 \text{ dB}$

Tipp!

Dimensionieren Sie den Transferluftauslass so, dass er 5 dB besser als die Tür ist. Dann wird der Wert $\rm R_w$ für die Tür kritisch.

Nehmen Sie die Berechnung nach folgender Formel vor:

$$R_{tot} = 10 \text{ x log} \left(\frac{S}{(10\text{m}^2 \text{ x } 10^{-0.1 \text{ x D}_{n,eW}}) + (S \text{ x } 10^{-0.1 \text{ x R}_{Wand}})} \right)$$

 R_{tot} =gesamtes Schalldämmmaß für Wand mit Auslass oder Tür.

S =Wandfläche.

 $D_{n,ew} = D_{n,ew}$ -Wert des Auslasses = R_w bei 10 m² Transmissonsfläche.

 $R_{Wand} = R$ -Wert der Wand ochne Auslass und Tür.

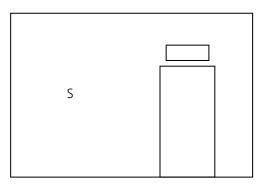


Abb. 3. Auslass über Tür, S = Wandfläche.

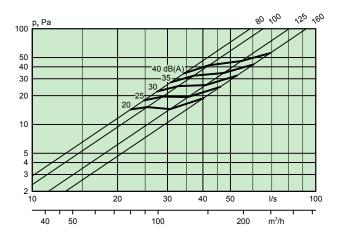
Tabelle 3

Unterschied: R _{Wand} -D _{n,ew}	Verkleinern Sie R _{Wand} um:
-5	1
-4	1,5
-3	2
-2	2
-1	2,5
0	3
1	3,5
2	4
3	5
4	5
5	6
6	7
8	9
10	10

Schalldaten

- Der Schallpegel dB(A) gilt für normal gedämpfte Räume mit 10 m² äquivalenter Absorptionsfläche und 4 dB Raumdämpfung.
- Der dB(C)-Wert liegt normalerweise 6-9 dB höher als der dB(A)-Wert.

Dimensionierungsdiagramm

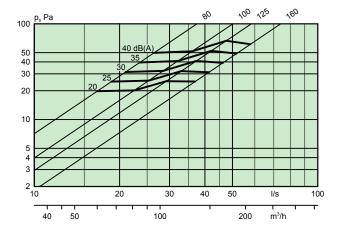

SOTTO - ein Auslass

Schallpegel L_w (dB)

Tabelle K_{OK}

Größe	Herstellung Mittelfrequenz (Oktavband) Hz								
SOTTO	der Öffnung in der Wand (mm)	63	125	250	500	1000	2000	4000	8000
80-100	80	5	6	5	5	-4	-21	-24	-28
80-100	100	9	7	6	4	-3	-11	-21	-27
125-160	125	17	13	6	3	-4	-13	-24	-28
125-160	160	14	9	4	3	-1	-9	-20	-28

SOTTO - ein Auslass

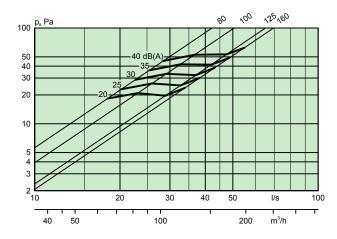

SOTTO - ein Auslass + Tellerventil, TRAC, s = 15 mm

Schallpegel L_w (dB)

Tabelle K_{OK}

Größe	Herstellung		N	littelfre	equenz	z (Okta	vband) Hz	
SOTTO	der Öffnung in der Wand (mm)	63	125	250	500	1000	2000	4000	8000
80-100	80	10	11	8	4	-8	-19	-28	-28
80-100	100	10	11	8	4	-6	-15	-27	-29
125-160	125	14	13	7	3	-4	-13	-22	-27
125-160	160	17	13	7	2	-6	-16	-26	-28

SOTTO - ein Auslass + Tellerventil, TRAC, s = 15 mm

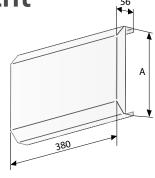

SOTTO - doppelte Auslässe

Schallpegel L_{w} (dB)

Tabelle K_{OK}

1 < () 1 1 ()	Herstellung der Öffnung in der Wand (mm)		N 125			z (Okta 1000			8000
80-100	80	12	12	7	4	-8	-20	-29	-28
80-100	100	9	7	6	4	-3	-11	-21	-27
125-160	125	17	13	6	3	-4	-13	-24	-28
125-160	160	14	9	4	3	-1	-9	-20	-28

SOTTO - doppelte Auslässe


Abmessungen und Gewicht

SOTTO

Größe		Abmes	sungen	(mm)		Cowicht (kg)
Grobe	Α	В	C	ØD	ØI	Gewicht (kg)
80-100	170	110	167	100	80	0,80
80-100	170	110	167	100	100	0,80
125-160	220	160	217	160	125	0,93
125-160	220	160	217	160	160	0,93

Öffnungsmaß SOTTO = \emptyset I.

HINWEIS! Zwei physische Größen.

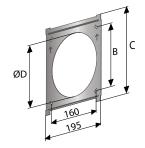


Abb. 4. SOTTO, Abmessungen.

VGC

Größe	Abmessur	Gewicht (kg)	
Grobe	С	ØD	Gewicht (kg)
80	80-160	80	0,22
100	80-160	100	0,30
125	80-160	125	0,33
160	80-160	160	0,42

Maß der herzustellenden Öffnung VGC = \emptyset D + 3 mm.

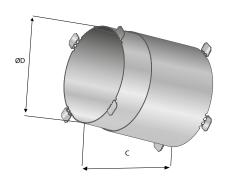


Abb. 5. VGC, Abmessungen.

TRAC

CräCo		Abm	essung	en (mm))	Courisht (kg)
Größe	ØΑ	Ød	ØD	H_{max}	S	Gewicht (kg)
80	100	77	90	35	15-20	0,16
100	120	97	110	45	15-20	0,19
125	150	122	140	45	15-20	0,26
160	190	157	180	55	15-20	0,37

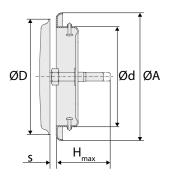


Abb. 6. TRAC, Abmessungen.

Spezifikation

Produkt

Schalldämpfender Transferluftauslass SOTTO a								
Version:								
Größe: 80-100, 125-160								
Zwei physische Größen.								

Zubehör

Runde Wand	durchführung:	VGC	а	-bbb	
Version:					
Für SOTTO	80-100: 125-160:	VGC	80 oder 100 125 oder 160		

Tellerventil:			TRAC	a	-bbb
Version:					
Für SOTTO	80-100: 125-160:	TRAC	80 oder 100 125 oder 160		

Beschreibungstext

Swegons rechteckiger schalldämpfender Transferluftauslass vom Typ SOTTO mit folgenden Funktionen:

- Der Schallbalken und der Befestigungsrahmen werden aus verzinkten Stahlblech hergestellt
- Schalldämmung mit verstärkter Oberflächenbeschichtung
- Pulverlackiert weiß, RAL 9003/NCS S 0500-N

Zubehör	Zu	be	hör
---------	----	----	-----

Größe:	SOTTOa - bbb	xx St.
Teleskopische Wanddurchführung:	VGCa - bbb	xx St.
Tellerventil:	TRACa - bbb	xx St.

