
Schalldämpfender Transferluftauslass

KURZINFORMATIONEN

- O Schallabsorbierender Transferlufteinheit für die Installation in Trockenbauwänden
- O Erhältlich in Z- oder T-Form
- O Ermöglicht einen Luftaustausch zwischen Räumen, in denen die Kanalleitung eingeschränkt ist, z. B. bei fehlender abgehängter Decke
- O Ausgekleidet mit schalldämmendem Material der Klasse B1 (Melaminharz) oder A2 (Mineralwolle)
- O Erhältlich ohne Auslass front für eine Schattenfugeninstallation

T-Form mit Frontplatte (Halshöhe C: 45 mm)					
Länge Höhe H (mm) $D_{n,e,w}$ (dB) R_w (dB)* R_w (dB)					
500	350	45	19	27	
1000	350	20	28		

T-Form ohne Frontplatte (Halshöhe C: 25 mm)						
Länge Höhe H (mm) $D_{n,e,w}$ (dB) R_w (dB)* R_w (dB)						
500	350	48	19	30		
1000	350	45	19	30		

Z-Form mit Frontplatte (Halshöhe C: 45 mm)						
Länge Höhe H (mm) $D_{n,e,w}$ (dB) R_w (dB)* R_w (dB)						
500	350	40	14	22		
1000 350 37 14 22						

Z-Form ohne Frontplatte (Halshöhe C: 25 mm)						
Länge Höhe H (mm) D _{n,e,w} (dB) R _w (dB)* R _w (dI						
500	350	43	14	25		
1000	350			25		
R _w .: Bewertetes Schalldammmaß bezogen auf die Wandöffnung R _w **: Bewertetes Schalldammmaß bezogen auf die Länge x Höhe des Überströmelements R _w = D _{n.e.w} + 10 x log (S/A _o)						

Technische Beschreibung

Ausführung

Das Überströmelement USE mit integrierten Schalldämpfer ist für den Einbau in Trockenbauwände geeignet. Das Element, wahlweise als Z- oder T-Form, besteht aus stahlverzinktem Material. Auskleidung des Kastens mit schalldämpfenden Material, Baustoffklasse B1 (Melaminharz) oder A2 (Mineralwolle). Frontplatten bestehen aus stahlverzinktem Material, Befestigung über Klemmfedern, Plattenperforation und RAL-Farbton wählbar. Ausführung ohne Frontplatte als Schattenfugeninstallation.

Funktion

Überströmkästen stellen eine lufttechnische Verbindung zwischen zwei Räumen z.B. Büroraum und Flur her, wenn eine andere Positionierung der Luftkanäle z.B. durch das Fehlen einer abgehängten Zwischendecke nicht möglich ist.

Die Überströmkästen sind so konzipiert, daß die Übertragung von Telefonieschall durch die Wand effektiv verhindert wird. Gleichzeitig sind die Abmessungen den Anforderungen im Trockenbau so angepaßt, sodaß eine problemlose Integration in leichte Trennwände möglich ist.

- Die Frontplatte aus stahlverzinktem Material, beschichtet in weiß (RAL 9010).
- Der Überströmungskasten besteht aus stahlverzinktem Material und ist mit schallabsorbierenden, abriebfestem Absorptionsmaterial aus Melaminharz der Baustoff-klasse B1 nach DIN 4102-1, oder wahlweise aus Mineralwolle in der Baustoffklasse A2 (optional) ausgekleidet.

Anpassung

• In Sonderausführung beschichtet im RAL-Farbton nach Wahl.

Zubehör

- Frontplatte mit unterschiedlicher Lochung.
- Staubschutz für den Innenausbau.

USE-T (T-form) mit Frontplatte 5.

Technische Daten

Akustische Daten

T-Form mit Frontplatte (Halshöhe C: 45 mm)

Länge	Höhe H (mm)	D _{n,e,w} (dB)	R _w (dB) *	R _W (dB) **
500	350	45	19	27
1000	350	43	20	28

T-Form ohne Frontplatte (Halshöhe C: 25 mm)

Länge	Höhe H (mm)	D _{n,e,w} (dB)	R _w (dB) *	R _w (dB) **
500	350	48	19	30
1000	350	45	19	30

 $D_{n,e,w}$: Normschallpegeldifferenz nach DIN EN ISO 717-1 ist ein von den akustischen Eigen schaften des Empfangsraumes unabhängiges Maß für die Schalldämmung zwischen zwei Räumen.

$$D_{n.e.w} = L_1 - L_2 + 10 \times \log (A_0/A)$$

», *: Bewertetes Schalldämmmaß bezogen auf die Wandöffnung

Rw**: Bewertetes Schalldämmmaß bezogen auf die Länge x Höhe des Überströmelements

$$R_{W} = D_{n,e,w} + 10 \times \log (S/A_{0})$$

L₁: Schalldruckpegel im Senderaum in dB

L₂: Schalldruckpegel im Empfängerraum in dB

A: Aquivalente Absorptionsfläche des Empfängerraums in m²

A_o: Bezugsabsorbtionsfläche 10m²

S: Prüffläche des Bauteils

Z-Form mit Frontplatte (Halshöhe C: 45 mm)

Länge	Höhe H (mm)	D _{n,e,w} (dB)	R _w (dB) 1)	R _w (dB) **
500	350	40	14	22
1000	350	37	14	22

Z-Form ohne Frontplatte (Halshöhe C: 25 mm)

Länge	Höhe H (mm)	D _{n,e,w} (dB)	R _w (dB) 1)	R _w (dB) **
500	350	43	14	25
1000	350	40	14	25

D_{n,e,w}: Normschallpegeldifferenz nach DIN EN ISO 717-1 ist ein von den akustischen Eigenschaften des Empfangsraumes unabhängiges Maß für die Schalldämmung zwischen zwei Räumen.

$$D_{n,e,w} = L_1 - L_2 + 10 \times \log (A_0/A)$$

R_w *: Bewertetes Schalldämmmaß bezogen auf die Wandöffnung

R_w**: Bewertetes Schalldämmmaß bezogen auf die Länge x Höhe des Überströmelements

$$R_{W} = D_{n,e,w} + 10 \times \log (S/A_{0})$$

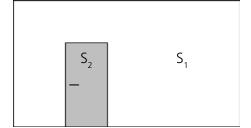
L₁: Schalldruckpegel im Senderaum in dB L₂: Schalldruckpegel im Empfängerraum in dB

A: Aguivalente Absorptionsfläche des Empfängerraums in m²

A_a: Bezugsabsorbtionsfläche 10m²

S: Prüffläche des Bauteils

Berechnung des resultierenden Schalldämmmaß RW, res einer Gesamtfläche

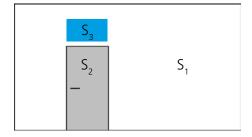

Angegebene Schalldämmmaße R_w für Wand (53 dB) und Tür (35 dB) in Anlehnung an die DIN 4109.

Beispiel 1: Resultierendes Schalldämmmaß $R_{W,res}$ für eine Wand inklusive Tür

• Zur Berechung des resultierenden Schalldämmmaßes wird die nachfolgende Formel genutzt. Hierbei steht S₁ für die Wandfläche, S₂ für die Türfläche und S_{aes} für die Gesamtfläche.

$$R_{w,res} = -10 \log \left[\frac{1}{S_{ges}} * \left(S_1 * 10^{\left(\frac{-R_{W,1}}{10} \right)} + S_2 * 10^{\left(\frac{-R_{W,2}}{10} \right)} \right) \right]$$

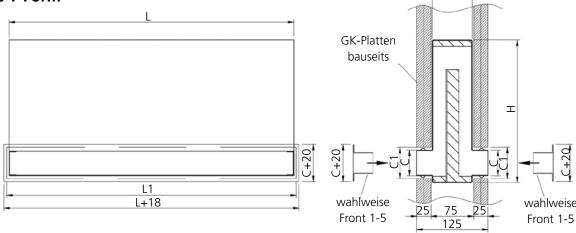
Größe	Resultierendes Schalldämmmaß R _{w,res} Wand + Tür		
	S (m ²)	R _w (dB)	
Wand (S1)	8	53	
Tür (S2)	2	35	
R _{W, res}		42	

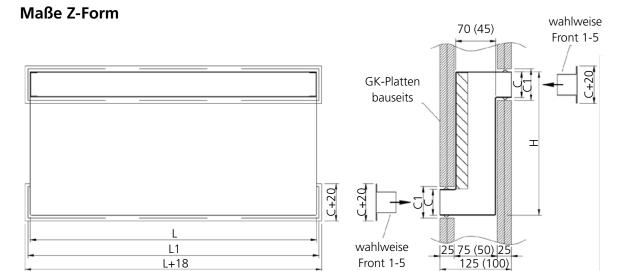


Beispiel 2: Resultierendes Schalldämmmaß $R_{W,res}$ für eine Wand inklusive Tür und installiertem Überströmelement.

Zur Berechung des resultierenden Schalldämmmaßes wird die nachfolgende Formel genutzt.
Hierbei steht S₁ für die Wandfläche, S₂ für die Türfläche, S₃ für die Auslassfläche und S_{ges} für die Gesamtfläche.

$$R_{w,res} = -10 \log \left[\frac{1}{S_{aes}} * \left(S_1 * 10^{\left(\frac{-R_{W,1}}{10} \right)} + S_2 * 10^{\left(\frac{-R_{W,2}}{10} \right)} + S_3 * 10^{\left(\frac{-R_{W,3}}{10} \right)} \right) \right]$$

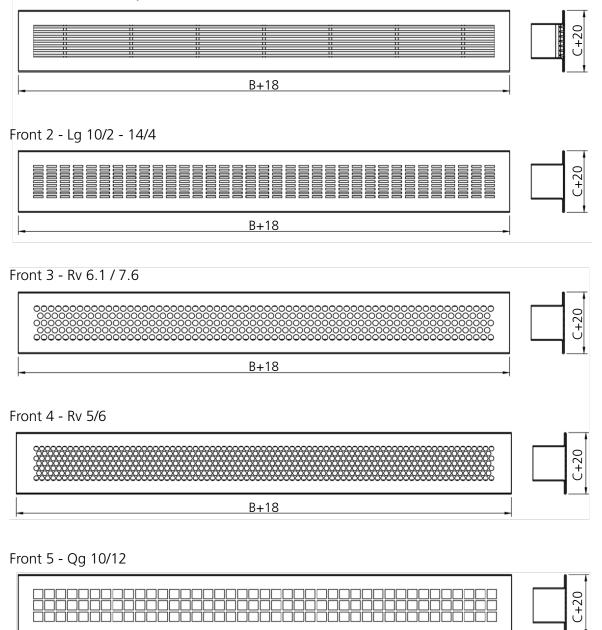

Größe	Resultierendes Schalldämmmaß R _{W,res} Wand + Tür + USE		
	S (m²)	R _w (dB)	
Wand (S ₁)	7,82	53	
Tür (S ₂)	2	35	
USE - T Form 500 x 350 (S ₃)	0,175	27	
R _{W, res}		40	


Abmessungen

Maße T-Form

Größe Maße Überströmelemen		ent	Maße	Front	Wandö	öffnung	
Grobe	Höhe H (mm)	Nenngröße L (mm)	Halshöhe C (mm)	Länge L+18 (mm)	Höhe C+20 (mm)	L1 (mm)	C1 (mm)
500	350	500	25	518	45	508	35
1000	350	1000	25	1018	45	1008	35

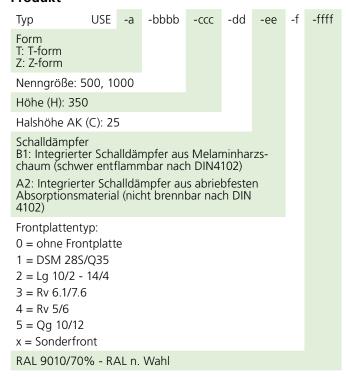
- Andere Nennlängen auf Anfrage
- Andere Höhen auf Anfrage
- Andere Halshöhen auf Anfrage
- Einsatz in andere Wandstärken mit optionaler Halslänge möglich
- Klemmfederbefestigung


Größe	Maße Überströmelement		Maße Front		Wandöffnung		
Grobe	Höhe H (mm)	Nenngröße L (mm)	Halshöhe C (mm)	Länge L+18 (mm)	Höhe C+20 (mm)	L1 (mm)	C1 (mm)
500	350	500	25	518	45	508	35
1000	350	1000	25	1018	45	1008	35

- Andere Nennlängen auf Anfrage
- Andere Höhen auf Anfrage
- Andere Halshöhen auf Anfrage
- Einsatz in andere Wandstärken mit optionaler Halslänge möglich
- Klemmfederbefestigung

Frontplatten

Front 1 - DSM 28S/Q35



B+18

Spezifikation

Produkt

Zubehör

Frontplatte mit unterschiedlicher Lochung

Staubschutz für den Innenausbau

Ausschreibungstext

Überströmelement USE mit integrierten Schalldämpfer für den Einbau in Trockenbauwände.

- Der Überströmkanal wahlweise als Z oder T Form besteht aus stahlverzinktem Material.
- Auskleidung des Kastens mit schalldämpfenden Material, Baustoffklasse B1 (Melaminharz) oder A2 (Mineralwolle).
- Frontplatten bestehen aus stahlverzinktem Material, Befestigung über Klemmfedern.
- Frontplattenperforation und RAL-Farbton wählbar.
- Ausführung ohne Frontplatte als Schattenfugeninstallation.

Größe: USE-a-bbbb-ccc-dd-ee-f-ffff xx St.

