ROBUST Runder Zu- und Abluftauslass

KURZDATEN

- Robuste Konstruktion
- O Zu- oder Abluft
- Einfache Deckenmontage
- O Führungsschienenperforation
- O Anwendung mit Anschlusskasten ALS möglich
- O Standardfarbe Weiß RAL 9003
 - 5 alternative Standardfarben
 - Andere Farben sind auf Anfrage erhältlich

LUFTVOLUMENSTROM - SCHALLDRUCK RAUM (Lp10A) *)										
ROC		25 d	B(A)	30 d	B(A)	35 d	B(A)			
Größe		l/s	m³/h	l/s	m³/h	l/s	m³/h			
100		22	79	26	94	29	104			
125		32	115	36	130	42	151			
160		47	169	54	194	63	227			
200	200			88	317	100	360			
250	250			123	443	140	504			
315	150	540	175	630	205	738				
400		209	752	242	871	280	1008			
ROC	ALS	25 dB(A)		30 dB(A)		35 dB(A)				
Größe	Größe	l/s	m³/h	l/s	m³/h	l/s	m³/h			
100	80-100	15	54	18	65	21	76			
125	100-125	24	86	27	97	32	115			
160	125-160	35	126	41	148	47	169			
200	160-200	59	212	68	245	78	281			
250	200-250	86	310	100	360	115	414			
315	250-315	120	432	139	500	161	580			
400	315-400	174	626	202	727	234	842			

^{*)} L_{p10A} = Schalldruck inkl. A-Filter mit 4 dB Raumdämpfung und 10 m² Raumabsorptionsfläche.

Die Tabelle unten zeigt die Daten für die Zuluft bei geöffneter Klappe und bei Verwendung des Anschlusskastens ALS.

Technische Beschreibung

Ausführung

Runder perforierter Zuluftauslass, der aus zwei Teilen besteht: Strahlkasten und Strahlkomponente. Die Strahlkomponente besitzt eine Führungsschienenperforation in einem runden Strahlprofil. Die Strahlkomponente wird im Strahlkasten in Standardausführung mit Stahlblindnieten fixiert, wodurch das Öffnen des Auslasses verhindert wird.

Material und Oberflächenbehandlung

Strahlkomponente und Strahlkasten werden aus 0,9 mm Stahlblech hergestellt.

Der ganze Auslass ist lackiert.

- Standardfarbe:
 - Weiß halbblank, Glanz 40, RAL 9003/NCS S 0500-N
- Alternative Standardfarben:
 - Silber blank, Glanz 80, RAL 9006
 - Graualuminium blank, Glanz 80, RAL 9007
 - Weiß halbblank, Glanz 40, RAL 9010
 - Schwarz halbblank, Glanz 35, RAL 9005
 - Grau halbmatt, Glanz 30, RAL 7037
- Unlackiert und andere Farbtöne sind auf Anfrage erhältlich.

Zubehör

Anschlusskasten:

ALS. Aus verzinktem Stahlblech hergestellt. Er enthält eine demontierbare Einregulierklappe, einen festen Messanschluss sowie Schallabsorber mit verstärkter Oberflächenschicht, Brandschutzklasse B-s1,d0 gemäß EN ISO 11925-2. Gehäusedichtheitsklasse C gemäß SS-EN 12237.

Projektierung/Montage

Der Strahlkasten wird an der Decke verschraubt, so dass dessen Rückseite press auf der Unterlage aufliegt. Der Einlaufstutzen wird im anschließenden Kanal mit Blindnieten fixiert.

Bei Anwendung des Anschlusskastens ALS wird dieser mit Pendeln oder Montageband in der Gebäudekonstruktion befestigt. Der Abstand zwischen Anschlusskasten ALS und Luftauslass kann mit gewöhnlichem Wickelfalzrohr bis zu 500 mm verlängert werden, ohne dass Messschlauch und Klappenstellvorrichtung verlängert werden müssen. Nach der Einregulierung wird die Strahlkomponente im Strahlkasten mit Stahlblindnieten fixiert. Siehe Abbildung 1.

Einregulierung

Die Einregulierung soll mit montierter Strahlkomponente erfolgen. Messschlauch und Klappenstellvorrichtung werden durch die Perforation der Strahlkomponente gezogen. An den Messschlauch wird ein Manometer angeschlossen. Mit Hilfe des k-Faktors des Auslasses kann der gewünschte Einregulierdruck ausgerechnet werden. Nach Festlegung der Klappenposition werden die beiden Klappenschnüre in einem sog. Einregulierknoten verbunden, um die Klappenposition anzuzeigen. Um die eingestellte Klappenposition zu arretieren, werden die Klappenstellvorrichtungen mit einer Verschlussschraube im Deckel des Verteilerkastens fixiert.

Messgenauigkeit und Anforderungen an eine gerade Strecke vor dem Anschlusskasten, siehe Abb 1. Die Anforderungen an die gerade Strecke sind abhängig vom Störungstyp vor dem Anschlusskasten. Abb. 1 zeigt einen Bogen, einen Übergang und ein T-Stück. Andere Störungstypen erfordern mindestens eine gerade Strecke von 2xD (D= Anschlussabmessung), um die Mess-

genauigkeit von ±10% des Volumenstroms einzuhalten.

Der K-Faktor ist auf der Kennzeichnung des Produkts sowie in der gültigen Einregulieranleitung angegeben, die von unserer Homepage im Internet abgerufen werden kann.

Entretien

Der Luftauslass wird bei Bedarf mit lauwarmem Wasser mit Zusatz von Geschirrspülmittel gereinigt. Der Zugang zum Kanalsystem ist durch das Ausbohren der Stahlblindnieten möglich, so dass die Strahlkomponente aus ihren Federbefestigungen herausgezogen werden kann. Bei Anwendung des Anschlusskastens ALS wird das Verteilerblech im Kasten zur Seite geklappt, so dass die Klappeneinheit gegriffen werden kann. Danach wird die Klappeneinheit entgegen dem Uhrzeigersinn gedreht und aus ihrer Befestigung gezogen.

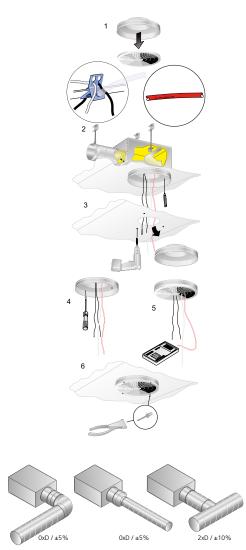


Abbildung 1. ROC + ALS.

Dimensionierung

- Schalldruckniveau dB(A) gilt für Räume mit 10 m² äguivalenter Schallabsorptionsfläche.
- Die Schalldämpfung (ΔL) wird im Oktavband aufgezeigt. Mündungsdämpfung ist in den Werten enthalten.
- Die Wurfweite I_{0.2} wird bei isothermer Lufteinblasung gemessen.
- Die empfohlene max. Untertemperatur ist 10 K.

Schalldateb

ROC - Zuluft

Schallleistungspegel L. (dB)

Tabelle K_{○K}

OF	`										
Größe		Mittelfrequenz (Oktavband) Hz									
ROC	63	125	250	500	1000	2000	4000	8000			
100	-3	-10	-5	0	2	-6	-18	-22			
125	-12	0	1	2	1	-12	-22	-21			
160	-11	-3	0	2	2	-15	-23	-22			
200	-5	0	0	0	2	-9	-24	-27			
250	-3	0	1	1	2	-9	-21	-20			
315	-4	-2	4	2	0	-10	-19	-20			
400	0	-2	4	3	0	-12	-20	-19			
Größe		1	Mittelf	requer	ız (Okta	avband)) Hz				
ROC + ALS	63	125	250	500	1000	2000	4000	8000			
100	-7	4	2	1	-1	-7	-15	-18			
125	-5	5	5	2	-1	-10	-18	-21			
160	-3	3	4	1	0	-9	-17	-21			
200	-2	4	5	2	-2	-10	-17	-21			
250	-4	6	4	3	-3	-10	-16	-19			
315	-1	4	3	3	-2	-11	-18	-20			
400	0	5	3	3	-1	-10	-17	-20			
Tol. ±	2	2	2	2	2	2	2	2			

• Zur Ermittlung von Luftstrahlausbreitung, Luftgeschwindigkeiten in der Aufenthaltszone oder von Schallpegeln in Räumen mit anderen Abmessungen wird auf unser Berechnungsprogramm verwiesen, siehe www.swegon.

 L_w = Schallleistungspegel

 $L_{D10A} = Schalldruckpegel dB (A)$

 K_{ok} = Korrektur für die Einstellung der L_{w} -Werte im Oktavband

 $L_{\rm W} = L_{\rm p10A} + K_{\rm OK}$ ergibt die Frequenzaufteilung im Oktavband

Schalldämpfung \(\Delta L(dB) \) Tabelle ∆L

Größe			Mittel	freque	nz (Okt	avbanc	l) Hz	
ROC	63	125	250	500	1000	2000	4000	8000
100	22	17	13	8	4	4	1	0
125	20	15	10	5	3	5	5	4
160	19	14	9	4	3	5	5	4
200	19	14	8	3	3	4	5	5
250	16	11	5	4	2	3	4	4
315	14	9	4	2	2	2	3	3
400	13	8	4	1	0	0	0	0
Größe			Mittel	freque	nz (Okt	avbanc	l) Hz	
ROC + ALS	63	125	250	500	1000	2000	4000	8000
100	22	16	12	17	22	16	11	15
125	21	16	9	17	23	16	11	13
160	19	14	10	17	19	12	10	12
200	16	11	8	16	18	12	11	11
250	13	8	8	16	17	12	12	13
315	11	6	7	19	14	10	10	13
400	10	5	8	14	11	10	11	12
400	10				''			

ROC - Abluft

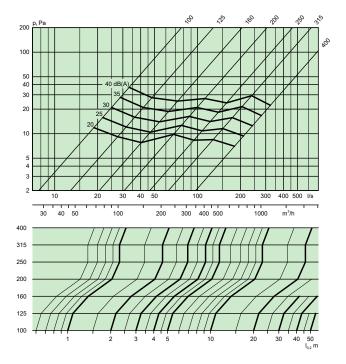
Schallleistungspegel L_w(dB)

Tabelle K_{OK}

Größe	Mittelfrequenz (Oktavband) Hz									
ROC	63	125	250	500	1000	2000	4000	8000		
100	-6	5	0	0	2	-8	-16	-20		
125	-6	5	0	0	2	-8	-16	-20		
160	-4	4	0	0	2	-7	-15	-20		
200	4	8	2	0	0	-5	-14	-18		
250	1	3	3	1	0	-4	-13	-17		
315	-3	-1	2	2	0	-6	-15	-18		
400	2	2	3	3	0	-7	-16	-18		
Größe			Mittelf	requer	ız (Okta	avband)) Hz			
ROC+ ALS	63	125	250	500	1000	2000	4000	8000		
100	-9	9	5	1	-4	-7	-11	-18		
125	-9	7	9	2	-6	-8	-15	-21		
160	-6	11	8	1	-6	-7	-14	-21		
200	-2	11	7	0	-6	-8	-15	-24		
250	0	10	6	-3	-5	-8	-14	-22		
315	0	10	6	-2	-4	-8	-14	-22		
400	-1	6	1	-1	-2	-7	-15	-24		
Tol. ±	2	2	2	2	2	2	2	2		

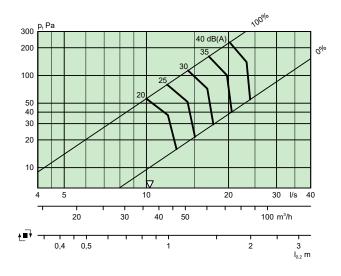
Schalldämpfung \(\Delta L(dB) \) Tabelle ∆L

Größe	Mittelfrequenz (Oktavband) Hz									
ROC	63	125	250	500	1000	2000	4000	8000		
100	22	17	13	8	4	4	1	0		
125	20	15	10	5	3	5	5	4		
160	19	14	9	4	3	5	5	4		
200	19	14	8	3	3	4	5	5		
250	16	11	5	4	2	3	4	4		
315	14	9	4	2	2	2	3	3		
400	13	8	4	1	0	0	0	0		
Größe			Mittel ⁻	freque	nz (Okt	tavband	l) Hz			
ROC + ALS	63	125	250	500	1000	2000	4000	8000		
100	22	16	12	17	22	16	11	15		
125	21	16	9	17	23	16	11	13		
160	19	14	10	17	19	12	10	12		
200	16	11	8	16	18	12	11	11		
250	13	8	8	16	17	12	12	13		
315	11	6	7	19	14	10	10	13		
400	10	5	8	14	11	10	11	12		
Tol. ±	2	2	2	2	2	2	2	2		


Auslegungsdiagramme

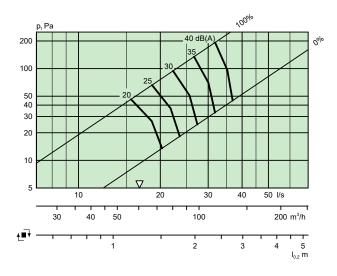
Luftstrom - Druckabfall - Schallpegel - Wurfweite

- dB(A) gilt für normalgedämpften Raum (4 dB Raumdämpfung).
- Die Wurfweite l_{0,2} wird bei isothermer Lufteinblasung gemessen.
- Die empfohlene max. Untertemperatur ist 10 K.
- Zur Ermittlung von Luftstrahlausbreitung, Luftgeschwindigkeiten in der Aufenthaltszone oder von Schallpegeln in Räumen mit anderen Abmessungen wird auf unser Berechnungsprogramm verwiesen, siehe www.swegon.

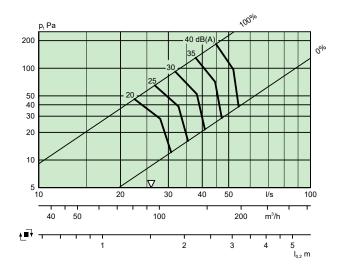

ROC - Zuluft

ROC 100-400, Zuluft

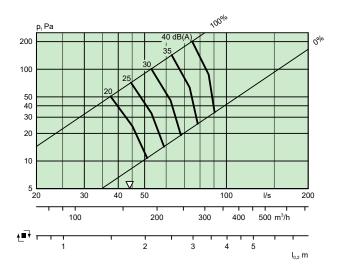
ROC + ALS - Tilluft

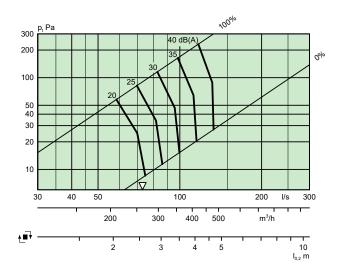

ROC 100 + ALS 80-100, Zuluft

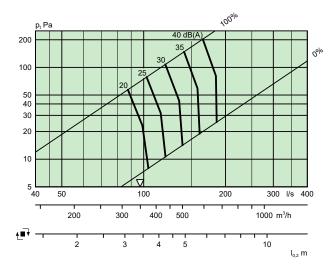
• Die Diagramme zeigen Daten für in die Decke integrierte Auslässe ROC.

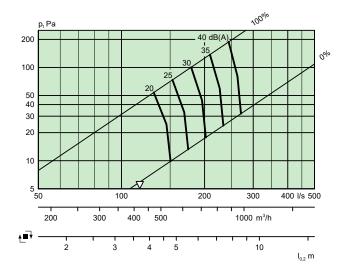

- Die Diagramme nicht für die Einregulierung anwenden.
- ∇ = min. Luftstrom für ausreichenden Einstelldruck.
- Der dB(C)-Wert liegt normalerweise 6-9 dB höher als der dB(A)-Wert.

ROC 125 + ALS 100-125, Zuluft

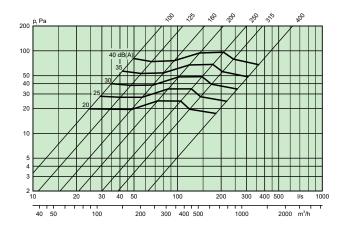


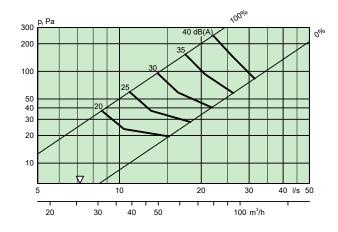

ROC 160 + ALS 125-160, Zuluft


ROC 200 + ALS 160-200, Zuluft

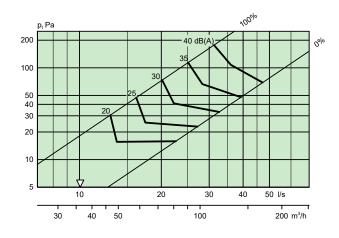

ROC 250 + ALS 200-250, Zuluft

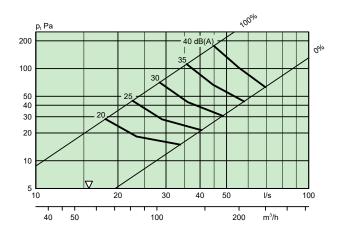
ROC 315 + ALS 250-315, Zuluft

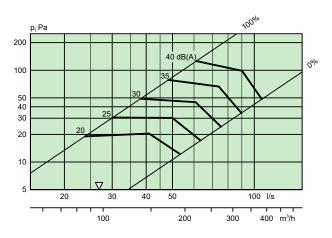

ROC 400 + ALS 315-400, Zuluft



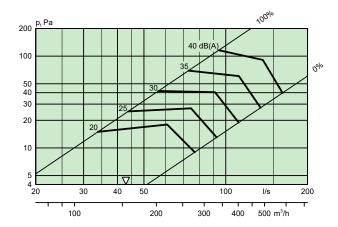
ROC – Abluft


ROC 100-400, Abluft

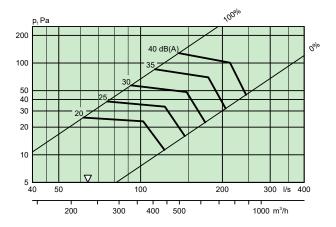

ROC 100 + ALS 80-100, Abluft

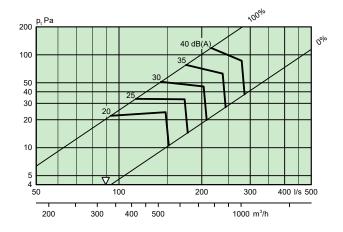

ROC 125 + ALS 100-125, Abluft

ROC 160 + ALS 125-160, Abluft



ROC 200 + ALS 160-200, Abluft




ROC 250 + ALS 200-250, Abluft

ROC 315 + ALS 250-315, Abluft

ROC 400 + ALS 315-400, Abluft

Masse und Gewichte

IVIA	33C	unu	Ue	VVIC	nte						ROC	inc. ALS
Größe	А	В	C	ØD	Ød	Е	F	G	Н	K	Gewicht, kg	Gewicht, kg
100	228	227	192	79	99	60	160	90	200	50	1,2	3,1
125	304	282	217	99	124	60	180	100	270	80	1,8	4,3
160	380	342	252	124	159	60	204	112	315	80	2,6	6,1
200	456	404	288	159	199	88	241	130	375	100	3,9	7,4
250	568	504	332	199	249	117	281	150	465	115	6	11
315	568	622	388	249	314	117	342	175	575	140	5,9	13,4
400	568	767	488	314	399	117	402	210	712	175	5,6	16,9

CL = Mittellinie

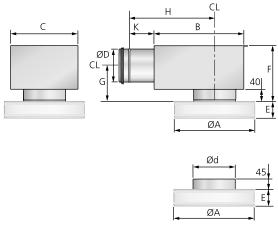
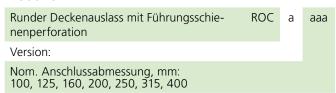



Abbildung 2. ROC + ALS.

Spezifikation

Produkt

Zubehör

Anschluss	Anschlusskasten ALS						
Version:							
Für ROC	100	ALS	80-100				
	125	ALS	100-125				
	160	ALS	125-160				
	200	ALS	160-200				
	250	ALS	200-250				
	315	ALS	250-315				
	400	ALS	315-400				

Beschreibungstext

Verstärkter, runder Luftauslässe vom Typ ROCa mit Anschlusskasten ALS von Swegon mit folgenden Funktionen:

- Aus 0,9 mm Stahlblech hergestellt.
- Führungsschienenperforation.
- Reinigungsfähiger Anschlusskasten ALS mit demontierbarer Einregulierungsklappe.
 - Messfunktion mit niedriger Fehlerquote.
 - Innerer Schalldämpfer mit fasersicherer Oberflächenschicht.
- Pulverlackierung weiß, RAL 9003/NCS S 0500-N.

Spezifikation	ROC					
Korrosivitätsklasse:	C2 (Pulverfarbe Epoxy Polyester)					
Spezifikation	ALS					
Dichtheitsklasse Gehäuse:	C					
Korrosivitätsklasse:	C3					
Größe:	ROCa aaa mit ALSd aaa-bbb	xx st				

