
DPG

Quellauslass für kleine Luftmengen

KURZDATEN

- Auslass für Theater für die Montage am Boden
- Festes Strahlprofil
- Einfache Montage
- Erfordert keine Wartung
- Reinigbar
- Eignet sich auch als traditioneller Wandauslass in Deckennähe
- Standardfarbe Schwarz RAL 9005
 - 5 alternative Standardfarben
 - Andere Farben sind auf Anfrage erhältlich

Technische Beschreibung

Ausführung

Runder Quellauslass, der aus zwei Teilen, Frontblech und Befestigungsrahmen, besteht. Der runde Befestigungsrahmen ist mit einem runden Einlaufstutzen mit Gummiringdichtung ausgerüstet. Das feldperforierte Frontblech wird über dem Befestigungsrahmen festgedreht. Der Auslass ist in drei Ausführungen erhältlich, abhängig davon, welcher Druckabfall gewünscht wird. Die Varianten 1 und 2 sind mit den Druckabfall erhöhenden Einsätzen ausgerüstet und für die Montage in ventilierten Installationsböden, versenkten Treppenabsätzen usw. angepasst. Die Variante 0 ist jedoch nicht mit solchen Einsätzen ausgerüstet und für die Montage im Anschlusskasten ALS vorgesehen.

Material und Oberflächenbehandlung

Der Befestigungsrahmen ist aus verzinktem Stahlblech hergestellt. Das Frontblech ist aus Aluminium. Es wird in der vom Besteller gewünschten Farbe lackiert. Die Standardausführung ist lackiert.

- Standardfarbe:
 - Schwarz halbblank, Glanz 35, RAL 9005
- Alternative Standardfarben:
 - Silber blank, Glanz 80, RAL 9006
 - Graualuminium blank, Glanz 80, RAL 9007
 - Weiß halbblank, Glanz 40, RAL 9010
 - Weiß halbblank, Glanz 40, RAL 9003/NCS S 0500-N
 - Grau halbmatt, Glanz 30, RAL 7037
- Unlackiert und andere Farbtöne sind auf Anfrage erhältlich.

Zubehör

Anschlusskasten:

ALS. Aus verzinktem Stahlblech hergestellt. Er enthält demontierbare Einregulierklappe, festen Messanschluss sowie Schallabsorber mit verstärkter Oberflächenschicht, Brandschutzklasse B-s1,d0 gemäß EN ISO 11925-2. Gehäusedichtheitsklasse C gemäß SS-EN 12237.

Montage

Bohrung gem. Maßskizze. Der Befestigungsrahmen wird in der Ausnehmung platziert und in der Gebäudekonstruktion verschraubt. Das Frontblech wird im Befestigungsrahmen festgedreht. Siehe Abbildung 2.

Einregulierung

Es wird empfohlen, dass der Raum hinter den Auslässen als Druckkammer funktioniert. Der Speisekanal zur entsprechenden Druckkammer wird mit Mess- und Einregulierklappe ausgerüstet. Da der Auslass mit Anschlusskasten ALS Anwendung findet, wird die Luftmenge eingestellt, indem der Messschlauch des Manometers direkt zum Zentrumloch in der Auslassfront gerichtet wird. Siehe Abbildung 2.

Messgenauigkeit und Anforderungen an eine gerade Strecke vor dem Anschlusskasten, siehe Abb 2. Die Anforderungen an die gerade Strecke sind abhängig vom Störungstyp vor dem Anschlusskasten. Abb. 2 zeigt einen Bogen, einen Übergang und ein T-Stück. Andere Störungstypen erfordern mindestens eine gerade Strecke von 2xD (D= Anschlussabmessung), um die Messgenauigkeit von ±10% des Volumenstroms einzuhalten.

Wartung

Der Luftauslass wird bei Bedarf mit lauwarmem Wasser mit Zusatz von Geschirrspülmittel gereinigt. Siehe Abbildung 2.

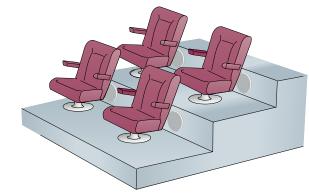


Abbildung 1. Prinzip DPG.

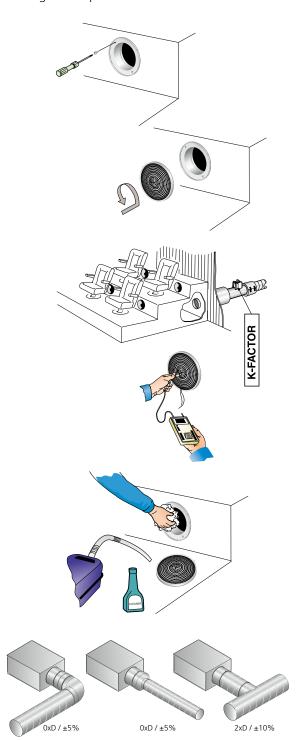


Abbildung 2. Montage. Einregulierung. Wartung.

Dimensionierung

- Schalldruckniveau dB(A) gilt für Räume mit 10 m² äquivalenter Schallabsorptionsfläche.
- Die Schalldämpfung (ΔL) wird im Oktavband aufgezeigt. Mündungsdämpfung ist in den Werten enthalten.
- Die Nahzonen $a_{0.20}$ und $b_{0.20}$ werden bei Δt -3 K gemessenund beziehen sich auf die max. Geschwindigkeit, unabhängig vom Abstand zum Boden.
- Δt ist der Unterschied zwischen der Raumtemperatur bei 1,2 m über Bodenhöhe und der Zulufttemperatur.
- Die empfohlene max. Untertemperatur ist 6 K.
- Für die Berechnung der Ausbreitung des Luftstrahls, der Luftgeschwindigkeiten in der Aufenthaltszone oder von Schallpegeln in Räumen mit anderen Abmessungen wird auf unsere Computerprogramme ProAir web hingewiesen. Können im Internet abgerufen werden.

 $L_w = Schallleistungspegel$

 $L_{D10A} = Schalldruckpegel dB (A)$

 K_{ok} = Korrektur für die Einstellung der L_{W} -Werte im Oktavband

 $L_{W} = L_{D10A} + K_{OK}$ ergibt die Frequenzaufteilung im Oktavband

Schalldaten

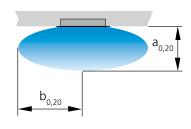
DPG

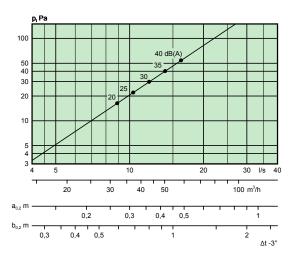
Schallleistungspegel L_w (dB)

Tabelle K_{ok}

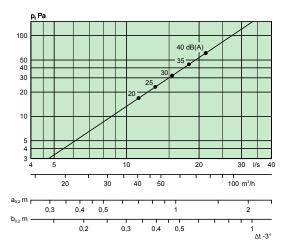
Größe	Mittelfrequenz (Oktavband) Hz							
DPG	63	125	250	500	1000	2000	4000	8000
125	-3	-4	-8	-4	1	-3	-7	-17
Größe	Mittelfrequenz (Oktavband) Hz							
DPG + ALS	63	125	250	500	1000	2000	4000	8000
125	0	2	2	-2	-1	-4	-7	-7
Tol. ±	2	2	2	2	2	2	2	2

Schalldämpfung ∆L (dB) Tabelle ∧L


Größe	Mittelfrequenz (Oktavband) Hz							
DPG	63	125	250	500	1000	2000	4000	8000
125	20	16	12	7	2	2	2	2
Größe	Mittelfrequenz (Oktavband) Hz							
DPG + ALS	63	125	250	500	1000	2000	4000	8000
125	20	16	9	17	23	16	11	13
Tol. ±	2	2	2	2	2	2	2	2

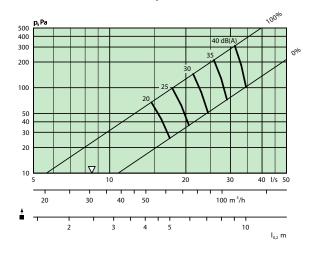

Dimensionierungsdiagramme DPG

Luftstrom - Druckabfall - Schallpegel - Nahzone

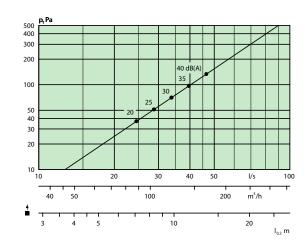

- Das Diagramm gibt die Daten für Δp DPG, versenkt in Treppenabsätzen, an.
- Die Nahzonen a_{0,20} und b_{0,20}, wurden bei Δt -3 K gemessen.
- Die Diagramme nicht für die Einregulierung anwenden.
- Der dB(C)-Wert liegt normalerweise 6-9 dB höher als der dB(A)-Wert.

DPG 1-125 mit Druckeinsatz 70

DPG 2-125 mit Druckeinsatz 85



DPG + ALS - Zuluft


Luftstrom - Druckabfall - Schallpegel - Nahzone

- Die Diagramme nicht für die Einregulierung anwenden.
- ∇ = min. Luftstrom für ausreichenden Einstelldruck.
- Der dB(C)-Wert liegt normalerweise 6-9 dB höher als der dB(A)-Wert.

DPG 0-125 + ALS 100-125, Wandauslass

DPG 0-125 als Wandauslass mit Mischströmung

Masse und Gewichte

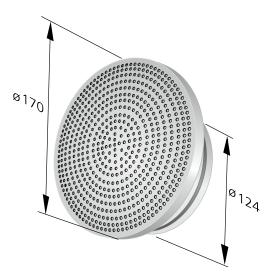


Abbildung 3. DPG. Gewicht 0,5 kg.

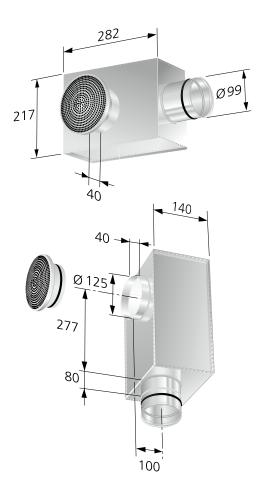
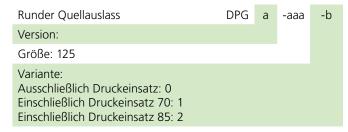



Abbildung 4. DPG mit Ansclusskasten ALS.

Spezifikation

Produkt

Zubehör

Ansclusskasten	ALS	d	-aaa-bbb
Version:			
DPG 0-125: ALS 100-125			

Beschreibungstext

Runde Quellauslässe vom Typ DGP von Swegon haben folgende Funktionen:

- Festes Strahlprofil
- Versatzfrei
- Reinigbar
- Pulverlackierung, schwarz, RAL 9005

Zubehör:

Ansclusskasten: ALSd aaa-bbb xx St. Größe: DPGa aaa-b xx St.

